It is well known that the tetrabasic phosphate in slags is completely soluble in citric acid while the tribasic phosphate is only slightly, if at all, attacked. The neutral ammonium salts of organic acids do not at first attack the tribasic phosphate at all, and they do not completely dissolve the tetrabasic phosphate. The solution used by Jensch is made as follows: Fifty grams of crystallized citric acid are dissolved in one liter of water. A weaker acid dissolves the tetrabasic phosphate too slowly and a stronger one attacks the tribasic phosphate present.
Schucht recommends the following method of procedure:[74] One gram of the slag, finely ground, is treated in a beaker glass with about 150 cubic centimeters of Jensen’s citric acid solution and warmed for twelve hours in an air-bath at from 50° to 70° with frequent shaking. Afterwards it is diluted with 100 cubic centimeters of water, boiled for one minute and filtered. The filter is washed thoroughly with hot water and the phosphoric acid is estimated in the filtrate in the usual way. With artificial mixtures of basic slags and other phosphates the quantity of basic slag can be determined by the above method.
(4) Method of Wrampelmeyer.—According to Wrampelmeyer the most convenient method for discovering the adulteration of basic slag is the use of the microscope.[75] All finely ground natural phosphates are light colored and with a strong magnification appear as rounded masses. In basic slags the particles are mostly black but there are often found red-colored fragments having sharp angles which refract their light in a peculiar way so that, with a very little experience, they can be recognized as being distinctive marks of pure basic slag.
In artificial mixtures of these two phosphates, which we have made in our laboratory, we have been able to detect with certainty as little as one per cent of added mineral phosphate.
One form of adulterating natural mineral phosphates has been mixing them with finely pulverized charcoal or soot to give them the black appearance characteristic of the basic slags. This form of adulteration is at once disclosed by simple ignition or by microscopic examination.
(5) Loss on Ignition.—If all doubts cannot be removed by the use of the microscope, the loss on ignition should be estimated. Natural phosphates all give a high loss on ignition, ranging from eight to twenty-four per cent, while a basic slag gives only a very slight loss on ignition, especially when fresh. A basic slag which has stood for a long while and absorbed carbon dioxid and moisture, may give a loss on ignition approximating, in a maximum case, the minimum loss on ignition from a natural phosphate.
In experiments made in this laboratory in testing for loss on ignition, we have uniformly found that natural mineral phosphates will lose from nearly one to two and one-half times as much on ignition as a basic slag which has been kept for two years. A basic slag in the laboratory more than two years old gave, as loss on ignition, 4.12 per cent. Several samples of finely ground Florida phosphates gave the following percentages of loss on ignition, as compared with a sample of slag.
Odorless phosphate 4.12.
Florida phosphates 8.06, 6.90, 9.58, 6.40, 10.38, and 10.67 respectively.
There are some mineral phosphates, however, which are ignited before being sent to the market. We have one such sample in our laboratory from Florida which gave, on ignition, a loss of only one and four-tenths per cent. In this case it is seen that the application of the process of ignition would not discriminate between a basic slag and a mineral phosphate.