95. Standard Solution of Uranium.—A solution of uranium is to be prepared as follows: Pure uranium nitrate, forty grams; distilled water, about 800 cubic centimeters. Dissolve the uranium nitrate in the distilled water and add a few drops of ammonia until a slight turbidity is produced, and then a sufficient amount of acetic acid to cause this turbidity to disappear. The volume is then completed to one liter with distilled water.
The uranium nitrate often contains some uranium phosphate and some ferric nitrate. It is important that it be freed from these foreign substances. This is secured by dissolving it in distilled water and precipitating it by sodium carbonate, which redissolves the uranium oxid and precipitates the iron phosphate and oxid.
The filtered liquor is saturated with nitric acid, and the uranium oxid reprecipitated by ammonia. It is then washed with distilled water by decantation and redissolved in nitric acid, as exactly as possible, evaporated, and crystallized.
The crystals are taken up with ether, which often leaves still a little insoluble matter. The solution is filtered, and the ether evaporated. The salt which remains is perfectly pure. It frequently happens when the uranium nitrate has not been properly purified that the solution prepared as has been indicated above, deposits a light precipitate of phosphate which alters its strength and affords a cause of error. Only those solutions should be employed which have been prepared some days in advance, and which have remained perfectly limpid.
The solution of uranium thus obtained contains uranium nitrate, a little ammonium nitrate, a very small quantity of uranium acetate, some ammonium acetate, and a little free acetic acid. Its sensibility is the more pronounced as the acetates present in it are less in quantity. It is important, therefore, never to prepare the solution with uranium acetate.
96. Typical Solution of Phosphoric Acid.—In order to titrate a solution of uranium, it is necessary to have a standard solution of phosphoric acid; that is to say, a solution containing a precise and known quantity of that acid in a given volume. This solution is prepared by means of acid ammonium phosphate, a salt which is easily obtained pure and dry. Sometimes as it may contain a small quantity of neutral phosphate which modifies the relative proportions of phosphoric acid and ammonia, and it is indispensable to have its strength verified. The titer of the typical solution should be such that it requires for the precipitation of the phosphoric acid which it contains, a volume of the solution of uranium almost exactly equal to its own, in order that the expansions or contractions which the two liquors undergo, by reason of changes in the temperature of the laboratory, should be without influence upon the results.
The solution of uranium prepared as has been indicated above, precipitates almost exactly five milligrams of phosphoric acid per cubic centimeter; the typical solution of phosphoric acid is prepared with eight and one-tenth grams of acid ammonium phosphate pure and dry, which is dissolved in a sufficient quantity of distilled water to make one liter.
The acid ammonium phosphate containing 61.74 per cent of anhydrous phosphoric acid, the quantity above gives exactly five grams of that acid in a liter, or five milligrams in a cubic centimeter.
97. Verification of the Strength of the Standard Solution of Phosphoric Acid.—The strength of the standard solution of phosphoric acid is verified by evaporating a known volume, fifty cubic centimeters for example, with a solution of ferric hydroxid containing a known quantity of ferric oxid. The mass having been evaporated to dryness, and ignited in a platinum crucible, gives an increase in the weight of the iron oxid exactly equal to the amount of anhydrous phosphoric acid contained therein, both the nitric acid and ammonia being driven off by the heat.
To prepare the solution of ferric hydroxid, dissolve twenty grams of iron filings in hydrochloric acid. The solution is filtered to separate the carbon, and it is converted into ferric nitrate by nitric acid, and the solution diluted with distilled water, and the ferric oxid precipitated by a slight excess of ammonia. The precipitate, washed by decantation with distilled water until the wash-water no longer gives a precipitate with silver nitrate, is redissolved in nitric acid, and the solution is concentrated or diluted, as the case may be, to bring the volume to one liter.