Manipulation.—From ten to fifty cubic centimeters of the solution of the phosphate to be determined are treated with fifteen cubic centimeters of the Joulie citrate solution avoiding warming. A few pieces of filter-paper, the ash content of which is known, are thrown in and, with stirring, fifteen cubic centimeters of magnesia mixture slowly added and if necessary also some free ammonia. By the small pieces of filter-paper the collection of the precipitate against the sides of the vessel and on the stirring rod is prevented and in this way the production of the precipitate hastened. After standing from one-half an hour to two hours the mixture is filtered, ignited, and weighed. If it be preferred to estimate the phosphoric acid by titration, the precipitate is dissolved in a little nitric acid, made slightly alkaline with ammonia, and then acid with acetic and then afterwards titrated with the standard uranium solution.

Conduct of the Uranium Method.—The principle upon which this method rests depends upon the fact that uranium nitrate or acetate precipitates uranium phosphate from solutions containing phosphoric acid and which contain no other free acid except acetic. In the presence of ammonium salts the precipitate is uranium ammonium phosphate having the formula PO₄NH₄UrO₂. The smallest excess of soluble uranium salt is at once detected by the ordinary treatment with potassium ferrocyanid.

Manipulation.—In all cases the solution is first made slightly alkaline with ammonia and then acid by a few drops of acetic, so that no free mineral acid may be present.

(1) With liquids free from iron:

If, on the addition of ammonium or sodium acetate, no turbidity be produced, the liquid is free from iron and alumina. In this case from ten to fifty cubic centimeters of the solution containing about one-tenth gram of phosphorus pentoxid are treated with ten cubic centimeters of sodium acetate, and afterwards with a quantity of uranium solution corresponding, as nearly as possible, to its supposed content of phosphorus pentoxid, and heated to boiling. From the heated liquid by means of a glass rod, one or two drops are taken and placed upon a porcelain plate and one drop of a freshly prepared solution of potassium ferrocyanid allowed to flow on it. If no brown color be seen at the point of contact of the two drops, additional quantities of the uranium solution are added and, after boiling, again tested with potassium ferrocyanid until a brown color is distinctly visible. The quantity of the uranium solution thus having been determined, duplicate analyses can be made and the whole quantity of the uranium solution added at once with the exception of the last drops, which are added as before.

(2) Solutions containing iron and alumina.

The solution is treated with the ammonium citrate solution of Joulie, the magnesia mixture added slowly, and the precipitate collected on a filter and washed with two and one-half per cent ammonia. The precipitate is then dissolved in nitric acid, made alkaline with ammonia, and then acid with acetic. This solution is then treated with ten cubic centimeters of sodium acetate and titrated with uranium, as described in (1). As an alternative method, 200 cubic centimeters of the superphosphate solution may be treated with fifty cubic centimeters of sodium acetate, allowed to stand for some time, and filtered through a filter of known ash content. In fifty cubic centimeters of the filtrate, which correspond to forty cubic centimeters of the original solution, phosphoric acid may be determined as described above. The precipitate, consisting of iron and aluminum phosphates, is washed three times on the filter with boiling water, dried, and ignited in a platinum dish. The weight of ignited precipitate, diminished by the weight of the ash contained in the filter and divided by two, gives the quantity of phosphorus pentoxid which it is necessary to add to that obtained by titration.

117. Determination of the Phosphoric Acid in all Phosphates and Basic Slags.

(1) Total phosphoric Acid:

Five grams of the fine phosphate meal, or slag meal, are moistened in a flask of 500 cubic centimeters content with some water and boiled on a sand-bath with forty cubic centimeters of hydrochloric acid of from 16° to 20° Beaumé. The boiling is continued until only a few cubic centimeters of a thick jelly of silicic acid remain. After cooling, some water is added and the phosphate shaken until the thick lumps of silica are finely divided. The flask is then filled to 500 cubic centimeters and its contents filtered. Fifty cubic centimeters of the filtrate are treated with fifteen cubic centimeters of the Joulie solution and treated in the manner described with magnesia mixture, precipitated, ignited, and weighed. The precipitate can also be dissolved and treated with uranium solution as described.