Of all the planets Mars has been most studied during the nineteenth century. Many illustrious astronomers have devoted years to the study of the red planet, with the result that more is known of the surface of Mars than of any other celestial body, with the exception of the Moon. After the time of Herschel, the leading students of Mars were Beer and Mädler, who carefully studied the planet from 1828 to 1839. They identified at each opposition the same dark spots, frequently obscured by mists, and they also made the most accurate determination of the rotation period, which they fixed at 24 hours 37 minutes 23 seconds. This estimate was confirmed in 1862 by Friedrich Kaiser (1808-1872) of Leyden, in 1869 by Richard Anthony Proctor (1837-1888), and in 1892 by Henricius Gerardus van de Sande Bakhuyzen (born 1838), director of the Leyden Observatory. In 1862 Lockyer identified the various markings seen by Beer and Madler in 1830. The other great names in Martian study prior to 1877 are Angelo Secchi and William Rutter Dawes (1799-1868), who studied Mars from 1852 to 1865 and secured a very valuable series of drawings. These drawings were used by Proctor for the construction of the first reliable map of Mars, which was published in 1870 in his work, ‘Other Worlds than Ours.’ Proctor gave names to the various Martian features, the reddish-ochre portions of the disc being named continents and the bluish-green portions seas; and Proctor’s views on Mars found favour for many years. In 1877, however, Schiaparelli opened a new era in the study of Mars. In September of that year, during the very favourable opposition of the planet, Schiaparelli, while executing a trigonometrical survey of the disc, discovered that the continents were cut up by numerous long dark streaks, which he called canali. In 1879, to his surprise, he found that some of the canals had become double; and he confirmed this in 1881 and at subsequent oppositions. Meanwhile, as Schiaparelli was the only observer who had hitherto seen the canals, there was much scepticism as to their reality. In 1886, however, they were seen at the Nice Observatory by Henri Perrotin (1845-1904), who also observed their duplication. Since 1886 they have been observed by many astronomers, including Camille Flammarion in France, William Frederick Denning (born 1848) in England, Vincenzo Cerulli (born 1859) in Italy, Percival Lowell and W. H. Pickering in the United States. In 1892 W. H. Pickering successfully observed the canals, and discovered at the junctions of two or more canals round black spots, to which he gave the name of “lakes,” in keeping with the view that the dark regions of the planet were seas.

In 1894 Percival Lowell erected at Flagstaff, Arizona, an observatory for the specific purpose of observing Mars and its canals in good and steady air. He was assisted by W. H. Pickering and by Andrew Ellicott Douglass (born 1867). During a year’s study Douglass measured the Martian atmosphere and discovered canals crossing the dark regions of the planet, finally disproving the idea of their aqueous character. Lowell recognised all Schiaparelli’s canals, and discovered many more. He also attentively studied the south polar cap of Mars, which disappeared entirely on October 12, 1894. Lowell noticed, also, that as the cap melted the canals became darker, as if water was being conveyed down; and accordingly he adopted the view put forward by Schiaparelli, that the canals are waterways lined on either side by banks of vegetation. His observations were published in the end of 1895 in his work ‘Mars.’ He is of opinion that the reddish-ochre regions or “continents” are deserts, and the greenish areas marshy tracts of vegetation. The lakes are named by him “oases,” and, as Miss Clerke observes, he “does not shrink from the full implication of the term.” He regards the canals as strips of vegetation fertilised by a small canal, much too small to be seen, an idea which originated with W. H. Pickering. The canals are believed by Lowell to be waterways down which the water from the melting polar cap is conveyed to the various oases. He considers, in fact, that the canals are constructed by intelligent beings with the express purpose of fertilising the oases, regarded by him as centres of population. He remarks that water is scarce on the planet, owing to its small size, and as a consequence the inhabitants are forced to utilise every drop. The canal system is the result.

Lowell’s theory has not been cordially received—although it is now gradually gaining popularity,—and several other hypotheses have been propounded to explain the canals. Proctor, who died some years before Lowell’s theory was given to the world, regarded them as rivers, but this view may now be looked upon as abandoned. It was suggested that the canals might be cracks in the surface of Mars or meteors ploughing tracks above it: and Professor John Martin Schaeberle (born 1853) of the Lick Observatory put forward the view that the canals were chains of mountains running over the light and dark regions. None of these theories, however, gained popularity, and had to give way to a more popular theory, the “illusion” hypothesis, put forward by the Italian astronomer Cerulli, and supported by Newcomb and Maunder. On the basis of the illusion theory, Newcomb explains that the “canaliform” appearance “is not to be regarded as a pure illusion on the one hand or an exact representation of objects on the other. It grows out of the spontaneous action of the eye in shaping slight and irregular combinations of light and shade, too minute to be separately made out into regular forms.” Experiments were made by Maunder in 1902, and the results pointed to the truth of the theory that the canals were really illusions. But the studies of Lowell at the oppositions of 1903 and 1905 have seriously weakened the hypothesis of Cerulli and Maunder, and strongly confirm the theory of the artificial origin of the canals. In 1903 Lowell was enabled, from a study of the development of the canals, to show the probability of their artificial nature, and his study of the double canals showed a distinct plan in their distribution. Finally, on May 11, 1905, several photographs of Mars were secured at the Lowell Observatory, on which the canals appeared, not as dots of light and shade, as on the illusion theory, but as straight dark lines. This goes far to prove the reality of the canals,—in spite of the ridicule cast on them and their observers,—and consequently the truth of the theory of intelligent life in Mars.

Meanwhile the old-fashioned Martian observations have been continued in less favourable climates than Arizona and Italy by various astronomers, among them the famous Camille Flammarion, the American astronomers James Edward Keeler (1857-1900), Edward Emerson Barnard (born 1857), the English astronomer W. F. Denning, and others. These conscientious and painstaking observers have done much for Martian study in increasing the number of accurate delineations of the Martian surface.

The spectrum of Mars was first examined by Huggins in 1867. He found distinct traces of water-vapour, and this was confirmed by Vogel in 1872, and by Maunder some years later. In 1894, however, William Wallace Campbell (born 1862), the American astronomer, observing from the Lick Observatory, California, was unable to detect the slightest difference between the spectra of Mars and the Moon, indicating that Mars had no appreciable atmosphere; and from this he deduced that the Martian polar caps could not be composed of snow and ice, but of frozen carbonic acid gas. In 1895, however, Vogel confirmed his previous observations, and reaffirmed the presence of water-vapour in the Martian atmosphere.

During the opposition of 1830, Mädler undertook an extensive search for a Martian satellite, but was unsuccessful. In 1862 the search was resumed by Heinrich Louis D’Arrest (1822-1875), the famous German observer, who was also unsuccessful. Accordingly the red planet was referred to by Tennyson as the “moonless Mars.” In 1877 the search was taken up by Asaph Hall, the self-made American astronomer, born at Goshen, Connecticut, in 1829, and employed from 1862 to 1891 at the Naval Observatory, Washington. During the famous opposition of August 1877, favoured by the great 26-inch refractor, he succeeded in discovering two very small satellites of Mars, to which he gave the names of Phobos and Deimos. He determined the time of revolution of Phobos at 7 hours 39 minutes, and that of Deimos at 30 hours 17 minutes,—Phobos revolving round Mars more than three times for one rotation of the planet on its axis. These two satellites are very small, not more than thirty miles in diameter. After Hall’s successful search, photographs were exposed at the Paris Observatory for other Martian satellites, but none was discovered. No further moons have been found belonging to the red planet, nor is it likely that any further satellites of Mars are in existence.

The discovery of a zone of small planets in the space between Mars and Jupiter belongs completely to the nineteenth century, although the existence of a planet in the vacant space was suspected three centuries ago. In 1772 the subject was taken up by Johann Elert Bode (1747-1826), afterwards director of the Berlin Observatory, who investigated a curious numerical relationship, since known as Bode’s Law, connecting the distances of the planets. If four is added to each of the numbers—0, 3, 6, 12, 24, 48, 96, and 192, the resulting series represents pretty accurately the distances of the planets from the Sun, thus—4 (Mercury), 7 (Venus), 10 (The Earth), 16 (Mars), 28, 52, (Jupiter), and 100 (Saturn). After the discovery of Uranus, in 1781, it was found that it filled up the number 196. Bode, however, saw that the number 28, between Mars and Jupiter, was vacant, and predicted the discovery of the planet. Aided by Franz Xavier von Zach (1754-1832), he called a congress of astronomers, which assembled in 1800 at Schröter’s observatory at Lilienthal, when, for the purpose of searching for the missing planet, the zodiac was divided into twenty-four zones, each of which was given to a separate astronomer. One of them was reserved for Giuseppe Piazzi (1746-1826), director of the Observatory of Palermo.

Born in 1746 at Ponte, in Lombardy, Giuseppe Piazzi, after entering the Theatine Order of monks, became in 1780 Professor of Mathematics at Palermo, where an observatory was erected in 1791; and at that observatory Piazzi worked till his death in 1826. In 1792 he commenced a great star-catalogue, and while making his nightly observations he discovered, on January 1, 1801—the first night of the nineteenth century,—what he took to be a tailless comet, but which proved to be a small planet revolving round the sun in the vacant space. The discovery was hailed by Bode and Von Zach with much enthusiasm, and Piazzi named the planet Ceres. The little planet was, however, soon lost in the rays of the sun before sufficient observations had been made; but the great mathematician, Friedrich Gauss (1777-1855), came to the rescue, and pointed out the spot where the planet was to be rediscovered. In that spot it was found on December 31, 1801, by Von Zach at Gotha, and on the following evening by Heinrich Olbers (1758-1840) at Bremen.

On March 28, 1802, while observing Ceres from his house at Bremen, Olbers was struck by the presence of a strange object near the path of the planet. At first he supposed it to be a variable star at maximum brilliance, but a few hours showed him that it was in motion, and was therefore another planet. He named it Pallas, and propounded the theory that the two “Asteroids”—so named by Herschel—were fragments of a trans-Martian planet, which, through some accident, had been shattered to pieces in the remote past. Olbers urged the necessity of searching for more small planets. His advice was taken. In 1804 Karl Ludwig Harding (1765-1834), Schröter’s assistant, discovered Juno, and Olbers himself detected Vesta, March 29, 1807.

After 1816 the search was relinquished, as no more planets were discovered. In 1830, however, a German amateur, Karl Ludwig Hencke (1793-1866), ex-postmaster of Driessen, commenced a search for new planets, which was rewarded, after fifteen years, by the discovery of Astræa, December 8, 1845. On July 1, 1847, he made another discovery, that of Hebe. A few weeks later, John Russell Hind (1823-1895), the English astronomer, discovered Iris. Since 1847 not a year has passed without one or more planets being found, sometimes as many as twenty being discovered in a single year. Some astronomers have made the search for asteroids their chief business. The principal asteroid discoverers have been Christian H. F. Peters (1813-1890), Henri Perrotin, Paul Henry (1848-1905), Prosper Henry (1849-1903), James Watson, Robert Luther (1822-1900), Johann Palisa (born 1848), and Max Wolf (born 1863).