When we consider the admirable order of mathematics, the perfect agreement of the objects it deals with, the immanent logic in numbers and figures, our certainty of always getting the same conclusion, however diverse and complex our reasonings on the same subject, we hesitate to see in properties apparently so positive a system of negations, the absence rather than the presence of a true reality. But we must not forget that our intellect, which finds this order and wonders at it, is directed in the same line of movement that leads to the materiality and spatiality of its object. The more complexity the intellect puts into its object by analyzing it, the more complex is the order it finds there. And this order and this complexity necessarily appear to the intellect as a positive reality, since reality and intellectuality are turned in the same direction.

When a poet reads me his verses, I can interest myself enough in him to enter into his thought, put myself into his feelings, live over again the simple state he has broken into phrases and words. I sympathize then with his inspiration, I follow it with a continuous movement which is, like the inspiration itself, an undivided act. Now, I need only relax my attention, let go the tension that there is in me, for the sounds, hitherto swallowed up in the sense, to appear to me distinctly, one by one, in their materiality. For this I have not to do anything; it is enough to withdraw something. In proportion as I let myself go, the successive sounds will become the more individualized; as the phrases were broken into words, so the words will scan in syllables which I shall perceive one after another. Let me go farther still in the direction of dream: the letters themselves will become loose and will be seen to dance along, hand in hand, on some fantastic sheet of paper. I shall then admire the precision of the interweavings, the marvelous order of the procession, the exact insertion of the letters into the syllables, of the syllables into the words and of the words into the sentences. The farther I pursue this quite negative direction of relaxation, the more extension and complexity I shall create; and the more the complexity in its turn increases, the more admirable will seem to be the order which continues to reign, undisturbed, among the elements. Yet this complexity and extension represent nothing positive; they express a deficiency of will. And, on the other hand, the order must grow with the complexity, since it is only an aspect of it. The more we perceive, symbolically, parts in an indivisible whole, the more the number of the relations that the parts have between themselves necessarily increases, since the same undividedness of the real whole continues to hover over the growing multiplicity of the symbolic elements into which the scattering of the attention has decomposed it. A comparison of this kind will enable us to understand, in some measure, how the same suppression of positive reality, the same inversion of a certain original movement, can create at once extension in space and the admirable order which mathematics finds there. There is, of course, this difference between the two cases, that words and letters have been invented by a positive effort of humanity, while space arises automatically, as the remainder of a subtraction arises once the two numbers are posited.[80] But, in the one case as in the other, the infinite complexity of the parts and their perfect coördination among themselves are created at one and the same time by an inversion which is, at bottom, an interruption, that is to say, a diminution of positive reality.


All the operations of our intellect tend to geometry, as to the goal where they find their perfect fulfilment. But, as geometry is necessarily prior to them (since these operations have not as their end to construct space and cannot do otherwise than take it as given) it is evident that it is a latent geometry, immanent in our idea of space, which is the main spring of our intellect and the cause of its working. We shall be convinced of this if we consider the two essential functions of intellect, the faculty of deduction and that of induction.

Let us begin with deduction. The same movement by which I trace a figure in space engenders its properties: they are visible and tangible in the movement itself; I feel, I see in space the relation of the definition to its consequences, of the premisses to the conclusion. All the other concepts of which experience suggests the idea to me are only in part constructible a priori; the definition of them is therefore imperfect, and the deductions into which these concepts enter, however closely the conclusion is linked to the premisses, participate in this imperfection. But when I trace roughly in the sand the base of a triangle, as I begin to form the two angles at the base, I know positively, and understand absolutely, that if these two angles are equal the sides will be equal also, the figure being then able to be turned over on itself without there being any change whatever. I know it before I have learnt geometry. Thus, prior to the science of geometry, there is a natural geometry whose clearness and evidence surpass the clearness and evidence of other deductions. Now, these other deductions bear on qualities, and not on magnitudes purely. They are, then, likely to have been formed on the model of the first, and to borrow their force from the fact that, behind quality, we see magnitude vaguely showing through. We may notice, as a fact, that questions of situation and of magnitude are the first that present themselves to our activity, those which intelligence externalized in action resolves even before reflective intelligence has appeared. The savage understands better than the civilized man how to judge distances, to determine a direction, to retrace by memory the often complicated plan of the road he has traveled, and so to return in a straight line to his starting-point.[81] If the animal does not deduce explicitly, if he does not form explicit concepts, neither does he form the idea of a homogeneous space. You cannot present this space to yourself without introducing, in the same act, a virtual geometry which will, of itself, degrade itself into logic. All the repugnance that philosophers manifest towards this manner of regarding things comes from this, that the logical work of the intellect represents to their eyes a positive spiritual effort. But, if we understand by spirituality a progress to ever new creations, to conclusions incommensurable with the premisses and indeterminable by relation to them, we must say of an idea that moves among relations of necessary determination, through premisses which contain their conclusion in advance, that it follows the inverse direction, that of materiality. What appears, from the point of view of the intellect, as an effort, is in itself a letting go. And while, from the point of view of the intellect, there is a petitio principii in making geometry arise automatically from space, and logic from geometry—on the contrary, if space is the ultimate goal of the mind's movement of detension, space cannot be given without positing also logic and geometry, which are along the course of the movement of which pure spatial intuition is the goal.

It has not been enough noticed how feeble is the reach of deduction in the psychological and moral sciences. From a proposition verified by facts, verifiable consequences can here be drawn only up to a certain point, only in a certain measure. Very soon appeal has to be made to common sense, that is to say, to the continuous experience of the real, in order to inflect the consequences deduced and bend them along the sinuosities of life. Deduction succeeds in things moral only metaphorically, so to speak, and just in the measure in which the moral is transposable into the physical, I should say translatable into spatial symbols. The metaphor never goes very far, any more than a curve can long be confused with its tangent. Must we not be struck by this feebleness of deduction as something very strange and even paradoxical? Here is a pure operation of the mind, accomplished solely by the power of the mind. It seems that, if anywhere it should feel at home and evolve at ease, it would be among the things of the mind, in the domain of the mind. Not at all; it is there that it is immediately at the end of its tether. On the contrary, in geometry, in astronomy, in physics, where we have to do with things external to us, deduction is all-powerful! Observation and experience are undoubtedly necessary in these sciences to arrive at the principle, that is, to discover the aspect under which things must be regarded; but, strictly speaking, we might, by good luck, have hit upon it at once; and, as soon as we possess this principle, we may draw from it, at any length, consequences which experience will always verify. Must we not conclude, therefore, that deduction is an operation governed by the properties of matter, molded on the mobile articulations of matter, implicitly given, in fact, with the space that underlies matter? As long as it turns upon space or spatialized time, it has only to let itself go. It is duration that puts spokes in its wheels.


Deduction, then, does not work unless there be spatial intuition behind it. But we may say the same of induction. It is not necessary indeed to think geometrically, nor even to think at all, in order to expect from the same conditions a repetition of the same fact. The consciousness of the animal already does this work, and indeed, independently of all consciousness, the living body itself is so constructed that it can extract from the successive situations in which it finds itself the similarities which interest it, and so respond to the stimuli by appropriate reactions. But it is a far cry from a mechanical expectation and reaction of the body, to induction properly so called, which is an intellectual operation. Induction rests on the belief that there are causes and effects, and that the same effects follow the same causes. Now, if we examine this double belief, this is what we find. It implies, in the first place, that reality is decomposable into groups, which can be practically regarded as isolated and independent. If I boil water in a kettle on a stove, the operation and the objects that support it are, in reality, bound up with a multitude of other objects and a multitude of other operations; in the end, I should find that our entire solar system is concerned in what is being done at this particular point of space. But, in a certain measure, and for the special end I am pursuing, I may admit that things happen as if the group water-kettle-stove were an independent microcosm. That is my first affirmation. Now, when I say that this microcosm will always behave in the same way, that the heat will necessarily, at the end of a certain time, cause the boiling of the water, I admit that it is sufficient that a certain number of elements of the system be given in order that the system should be complete; it completes itself automatically, I am not free to complete it in thought as I please. The stove, the kettle and the water being given, with a certain interval of duration, it seems to me that the boiling, which experience showed me yesterday to be the only thing wanting to complete the system, will complete it to-morrow, no matter when to-morrow may be. What is there at the base of this belief? Notice that the belief is more or less assured, according as the case may be, but that it is forced upon the mind as an absolute necessity when the microcosm considered contains only magnitudes. If two numbers be given, I am not free to choose their difference. If two sides of a triangle and the contained angle are given, the third side arises of itself and the triangle completes itself automatically. I can, it matters not where and it matters not when, trace the same two sides containing the same angle: it is evident that the new triangles so formed can be superposed on the first, and that consequently the same third side will come to complete the system. Now, if my certitude is perfect in the case in which I reason on pure space determinations, must I not suppose that, in the other cases, the certitude is greater the nearer it approaches this extreme case? Indeed, may it not be the limiting case which is seen through all the others and which colors them, accordingly as they are more or less transparent, with a more or less pronounced tinge of geometrical necessity?[82] In fact, when I say that the water on the fire will boil to-day as it did yesterday, and that this is an absolute necessity, I feel vaguely that my imagination is placing the stove of yesterday on that of to-day, kettle on kettle, water on water, duration on duration, and it seems then that the rest must coincide also, for the same reason that, when two triangles are superposed and two of their sides coincide, their third sides coincide also. But my imagination acts thus only because it shuts its eyes to two essential points. For the system of to-day actually to be superimposed on that of yesterday, the latter must have waited for the former, time must have halted, and everything become simultaneous: that happens in geometry, but in geometry alone. Induction therefore implies first that, in the world of the physicist as in that of the geometrician, time does not count. But it implies also that qualities can be superposed on each other like magnitudes. If, in imagination, I place the stove and fire of to-day on that of yesterday, I find indeed that the form has remained the same; it suffices, for that, that the surfaces and edges coincide; but what is the coincidence of two qualities, and how can they be superposed one on another in order to ensure that they are identical? Yet I extend to the second order of reality all that applies to the first. The physicist legitimates this operation later on by reducing, as far as possible, differences of quality to differences of magnitude; but, prior to all science, I incline to liken qualities to quantities, as if I perceived behind the qualities, as through a transparency, a geometrical mechanism.[83] The more complete this transparency, the more it seems to me that in the same conditions there must be a repetition of the same fact. Our inductions are certain, to our eyes, in the exact degree in which we make the qualitative differences melt into the homogeneity of the space which subtends them, so that geometry is the ideal limit of our inductions as well as of our deductions. The movement at the end of which is spatiality lays down along its course the faculty of induction as well as that of deduction, in fact, intellectuality entire.