By this is a living being distinguished from all that our perception or our science isolates or closes artificially. It would therefore be wrong to compare it to an object. Should we wish to find a term of comparison in the inorganic world, it is not to a determinate material object, but much rather to the totality of the material universe that we ought to compare the living organism. It is true that the comparison would not be worth much, for a living being is observable, whilst the whole of the universe is constructed or reconstructed by thought. But at least our attention would thus have been called to the essential character of organization. Like the universe as a whole, like each conscious being taken separately, the organism which lives is a thing that endures. Its past, in its entirety, is prolonged into its present, and abides there, actual and acting. How otherwise could we understand that it passes through distinct and well-marked phases, that it changes its age—in short, that it has a history? If I consider my body in particular, I find that, like my consciousness, it matures little by little from infancy to old age; like myself, it grows old. Indeed, maturity and old age are, properly speaking, attributes only of my body; it is only metaphorically that I apply the same names to the corresponding changes of my conscious self. Now, if I pass from the top to the bottom of the scale of living beings, from one of the most to one of the least differentiated, from the multicellular organism of man to the unicellular organism of the Infusorian, I find, even in this simple cell, the same process of growing old. The Infusorian is exhausted at the end of a certain number of divisions, and though it may be possible, by modifying the environment, to put off the moment when a rejuvenation by conjugation becomes necessary, this cannot be indefinitely postponed.[4] It is true that between these two extreme cases, in which the organism is completely individualized, there might be found a multitude of others in which the individuality is less well marked, and in which, although there is doubtless an ageing somewhere, one cannot say exactly what it is that grows old. Once more, there is no universal biological law which applies precisely and automatically to every living thing. There are only directions in which life throws out species in general. Each particular species, in the very act by which it is constituted, affirms its independence, follows its caprice, deviates more or less from the straight line, sometimes even remounts the slope and seems to turn its back on its original direction. It is easy enough to argue that a tree never grows old, since the tips of its branches are always equally young, always equally capable of engendering new trees by budding. But in such an organism—which is, after all, a society rather than an individual—something ages, if only the leaves and the interior of the trunk. And each cell, considered separately, evolves in a specific way. Wherever anything lives, there is, open somewhere, a register in which time is being inscribed.

This, it will be said, is only a metaphor.—It is of the very essence of mechanism, in fact, to consider as metaphorical every expression which attributes to time an effective action and a reality of its own. In vain does immediate experience show us that the very basis of our conscious existence is memory, that is to say, the prolongation of the past into the present, or, in a word, duration, acting and irreversible. In vain does reason prove to us that the more we get away from the objects cut out and the systems isolated by common sense and by science and the deeper we dig beneath them, the more we have to do with a reality which changes as a whole in its inmost states, as if an accumulative memory of the past made it impossible to go back again. The mechanistic instinct of the mind is stronger than reason, stronger than immediate experience. The metaphysician that we each carry unconsciously within us, and the presence of which is explained, as we shall see later on, by the very place that man occupies amongst the living beings, has its fixed requirements, its ready-made explanations, its irreducible propositions: all unite in denying concrete duration. Change must be reducible to an arrangement or rearrangement of parts; the irreversibility of time must be an appearance relative to our ignorance; the impossibility of turning back must be only the inability of man to put things in place again. So growing old can be nothing more than the gradual gain or loss of certain substances, perhaps both together. Time is assumed to have just as much reality for a living being as for an hour-glass, in which the top part empties while the lower fills, and all goes where it was before when you turn the glass upside down.

True, biologists are not agreed on what is gained and what is lost between the day of birth and the day of death. There are those who hold to the continual growth in the volume of protoplasm from the birth of the cell right on to its death.[5] More probable and more profound is the theory according to which the diminution bears on the quantity of nutritive substance contained in that "inner environment" in which the organism is being renewed, and the increase on the quantity of unexcreted residual substances which, accumulating in the body, finally "crust it over."[6] Must we however—with an eminent bacteriologist—declare any explanation of growing old insufficient that does not take account of phagocytosis?[7] We do not feel qualified to settle the question. But the fact that the two theories agree in affirming the constant accumulation or loss of a certain kind of matter, even though they have little in common as to what is gained and lost, shows pretty well that the frame of the explanation has been furnished a priori. We shall see this more and more as we proceed with our study: it is not easy, in thinking of time, to escape the image of the hour-glass.

The cause of growing old must lie deeper. We hold that there is unbroken continuity between the evolution of the embryo and that of the complete organism. The impetus which causes a living being to grow larger, to develop and to age, is the same that has caused it to pass through the phases of the embryonic life. The development of the embryo is a perpetual change of form. Any one who attempts to note all its successive aspects becomes lost in an infinity, as is inevitable in dealing with a continuum. Life does but prolong this prenatal evolution. The proof of this is that it is often impossible for us to say whether we are dealing with an organism growing old or with an embryo continuing to evolve; such is the case, for example, with the larvae of insects and crustacea. On the other hand, in an organism such as our own, crises like puberty or the menopause, in which the individual is completely transformed, are quite comparable to changes in the course of larval or embryonic life—yet they are part and parcel of the process of our ageing. Although they occur at a definite age and within a time that may be quite short, no one would maintain that they appear then ex abrupto, from without, simply because a certain age is reached, just as a legal right is granted to us on our one-and-twentieth birthday. It is evident that a change like that of puberty is in course of preparation at every instant from birth, and even before birth, and that the ageing up to that crisis consists, in part at least, of this gradual preparation. In short, what is properly vital in growing old is the insensible, infinitely graduated, continuance of the change of form. Now, this change is undoubtedly accompanied by phenomena of organic destruction: to these, and to these alone, will a mechanistic explanation of ageing be confined. It will note the facts of sclerosis, the gradual accumulation of residual substances, the growing hypertrophy of the protoplasm of the cell. But under these visible effects an inner cause lies hidden. The evolution of the living being, like that of the embryo, implies a continual recording of duration, a persistence of the past in the present, and so an appearance, at least, of organic memory.

The present state of an unorganized body depends exclusively on what happened at the previous instant; and likewise the position of the material points of a system defined and isolated by science is determined by the position of these same points at the moment immediately before. In other words, the laws that govern unorganized matter are expressible, in principle, by differential equations in which time (in the sense in which the mathematician takes this word) would play the rôle of independent variable. Is it so with the laws of life? Does the state of a living body find its complete explanation in the state immediately before? Yes, if it is agreed a priori to liken the living body to other bodies, and to identify it, for the sake of the argument, with the artificial systems on which the chemist, physicist, and astronomer operate. But in astronomy, physics, and chemistry the proposition has a perfectly definite meaning: it signifies that certain aspects of the present, important for science, are calculable as functions of the immediate past. Nothing of the sort in the domain of life. Here calculation touches, at most, certain phenomena of organic destruction. Organic creation, on the contrary, the evolutionary phenomena which properly constitute life, we cannot in any way subject to a mathematical treatment. It will be said that this impotence is due only to our ignorance. But it may equally well express the fact that the present moment of a living body does not find its explanation in the moment immediately before, that all the past of the organism must be added to that moment, its heredity—in fact, the whole of a very long history. In the second of these two hypotheses, not in the first, is really expressed the present state of the biological sciences, as well as their direction. As for the idea that the living body might be treated by some superhuman calculator in the same mathematical way as our solar system, this has gradually arisen from a metaphysic which has taken a more precise form since the physical discoveries of Galileo, but which, as we shall show, was always the natural metaphysic of the human mind. Its apparent clearness, our impatient desire to find it true, the enthusiasm with which so many excellent minds accept it without proof—all the seductions, in short, that it exercises on our thought, should put us on our guard against it. The attraction it has for us proves well enough that it gives satisfaction to an innate inclination. But, as will be seen further on, the intellectual tendencies innate to-day, which life must have created in the course of its evolution, are not at all meant to supply us with an explanation of life: they have something else to do.

Any attempt to distinguish between an artificial and a natural system, between the dead and the living, runs counter to this tendency at once. Thus it happens that we find it equally difficult to imagine that the organized has duration and that the unorganized has not. When we say that the state of an artificial system depends exclusively on its state at the moment before, does it not seem as if we were bringing time in, as if the system had something to do with real duration? And, on the other hand, though the whole of the past goes into the making of the living being's present moment, does not organic memory press it into the moment immediately before the present, so that the moment immediately before becomes the sole cause of the present one?—To speak thus is to ignore the cardinal difference between concrete time, along which a real system develops, and that abstract time which enters into our speculations on artificial systems. What does it mean, to say that the state of an artificial system depends on what it was at the moment immediately before? There is no instant immediately before another instant; there could not be, any more than there could be one mathematical point touching another. The instant "immediately before" is, in reality, that which is connected with the present instant by the interval dt. All that you mean to say, therefore, is that the present state of the system is defined by equations into which differential coefficients enter, such as ds|dt, dv|dt, that is to say, at bottom, present velocities and present accelerations. You are therefore really speaking only of the present—a present, it is true, considered along with its tendency. The systems science works with are, in fact, in an instantaneous present that is always being renewed; such systems are never in that real, concrete duration in which the past remains bound up with the present. When the mathematician calculates the future state of a system at the end of a time t, there is nothing to prevent him from supposing that the universe vanishes from this moment till that, and suddenly reappears. It is the t-th moment only that counts—and that will be a mere instant. What will flow on in the interval—that is to say, real time—does not count, and cannot enter into the calculation. If the mathematician says that he puts himself inside this interval, he means that he is placing himself at a certain point, at a particular moment, therefore at the extremity again of a certain time t'; with the interval up to T' he is not concerned. If he divides the interval into infinitely small parts by considering the differential dt, he thereby expresses merely the fact that he will consider accelerations and velocities—that is to say, numbers which denote tendencies and enable him to calculate the state of the system at a given moment. But he is always speaking of a given moment—a static moment, that is—and not of flowing time. In short, the world the mathematician deals with is a world that dies and is reborn at every instant—the world which Descartes was thinking of when he spoke of continued creation. But, in time thus conceived, how could evolution, which is the very essence of life, ever take place? Evolution implies a real persistence of the past in the present, a duration which is, as it were, a hyphen, a connecting link. In other words, to know a living being or natural system is to get at the very interval of duration, while the knowledge of an artificial or mathematical system applies only to the extremity.

Continuity of change, preservation of the past in the present, real duration—the living being seems, then, to share these attributes with consciousness. Can we go further and say that life, like conscious activity, is invention, is unceasing creation?


It does not enter into our plan to set down here the proofs of transformism. We wish only to explain in a word or two why we shall accept it, in the present work, as a sufficiently exact and precise expression of the facts actually known. The idea of transformism is already in germ in the natural classification of organized beings. The naturalist, in fact, brings together the organisms that are like each other, then divides the group into sub-groups within which the likeness is still greater, and so on: all through the operation, the characters of the group appear as general themes on which each of the sub-groups performs its particular variation. Now, such is just the relation we find, in the animal and in the vegetable world between the generator and the generated: on the canvas which the ancestor passes on, and which his descendants possess in common, each puts his own original embroidery. True, the differences between the descendant and the ancestor are slight, and it may be asked whether the same living matter presents enough plasticity to take in turn such different forms as those of a fish, a reptile and a bird. But, to this question, observation gives a peremptory answer. It shows that up to a certain period in its development the embryo of the bird is hardly distinguishable from that of the reptile, and that the individual develops, throughout the embryonic life in general, a series of transformations comparable to those through which, according to the theory of evolution, one species passes into another. A single cell, the result of the combination of two cells, male and female, accomplishes this work by dividing. Every day, before our eyes, the highest forms of life are springing from a very elementary form. Experience, then, shows that the most complex has been able to issue from the most simple by way of evolution. Now, has it arisen so, as a matter of fact? Paleontology, in spite of the insufficiency of its evidence, invites us to believe it has; for, where it makes out the order of succession of species with any precision, this order is just what considerations drawn from embryogeny and comparative anatomy would lead any one to suppose, and each new paleontological discovery brings transformism a new confirmation. Thus, the proof drawn from mere observation is ever being strengthened, while, on the other hand, experiment is removing the objections one by one. The recent experiments of H. de Vries, for instance, by showing that important variations can be produced suddenly and transmitted regularly, have overthrown some of the greatest difficulties raised by the theory. They have enabled us greatly to shorten the time biological evolution seems to demand. They also render us less exacting toward paleontology. So that, all things considered, the transformist hypothesis looks more and more like a close approximation to the truth. It is not rigorously demonstrable; but, failing the certainty of theoretical or experimental demonstration, there is a probability which is continually growing, due to evidence which, while coming short of direct proof, seems to point persistently in its direction: such is the kind of probability that the theory of transformism offers.