Ferroxyl Tests on Painted Steel Surfaces. Upper Row Painted with Stimulative Paints—Lower Row with Inhibitive Paints.
Water Test on Plates Painted—Except in Center Spot. Left Hand Plates Painted with Stimulative Paints, Right Hand Plates Painted with Inhibitive Paints.
View of Steel Plates Painted with Stimulative Paints, after Immersion in Ferroxyl Jelly.
“Three years ago the suggestion was made in a paper presented before the Tenth Annual Meeting of this Society that the various types of substances used as pigments in protective coatings might exert a stimulative or an inhibitive action on the rate and tendency to corrosion of the underlying metal. It was further suggested on a theoretical ground that slightly soluble chromates should exert a protective action when employed as pigments by maintaining the surface of the iron in a passive condition in case water and oxygen penetrated the paint film. In view also of the well-known fact that alkalies inhibit while acids stimulate the corrosion of iron, it was suggested that the action of more or less pure pigments on iron in the presence of water should be thoroughly investigated. Two years ago this Committee invited the co-operation of Committee D-1 (then known as Committee E) in the investigation, and a special sub-committee representing the two main committees was appointed.
“The methods and results of the water-pigment tests have previously been reported and published, and need not be given in detail. Briefly, the method consisted in immersing samples of steel in water suspensions of the various pigments and blowing air through the containers for definite periods of time, the corrosion being measured by the loss in weight sustained by the test pieces. About fifty pigments which are in more or less common use for painting steel were purchased in the open market and distributed among a number of the members of the Committee, who agreed to carry out the work. Each investigator worked independently of the others, except that the same general method was followed; the time of exposure to the corroding action, however, varied in the different experiments. When the results were compared and analyzed by the sub-committee, it was felt that the general agreement of the results obtained by the several investigators was striking and merited further and more systematic work. As a result of these tests the sub-committee tentatively divided the pigments into inhibitors, stimulators, and indeterminates. The word ‘indeterminate’ was selected after considerable discussion, because the words ‘neutral’ or ‘inert’ already possess a special meaning as applied to paint technology. The Committee takes this occasion to emphatically state that in adopting this tentative classification, the words ‘inhibitive’ and ’stimulative’ as used by them up to the present time apply only to the results obtained in the water tests, and the inference that the results obtained have decided which class the pigment will fall into when made into a paint with the usual vehicles and used as a protective coating on iron and steel, is not justified. In order to make this point quite clear, it has been agreed by the Committee to qualify the classification so as to speak of the various materials tested as ‘water stimulative’ or ‘water inhibitive.’”