The first process of adaptation effected by the monera must have been the condensation of an external crust, which, as a protecting covering, shut in the softer interior from the hostile influences of the outer world. As soon as, by condensation of the homogeneous moneron, a cell-kernel arose in the interior, and a membrane arose on the surface, all the fundamental parts of the unit were then furnished. Such a unit was an organism, similar to the white corpuscle of the blood, and called amœbæ. Here we have two different stages of evolution; the protoplasma (better plasson) of the cytod undergoes differentiation, and is split up into two kinds of albuminous substances—the inner cell-kernel (nucleus) and the outer cell-substance (protoplasma). Edward von Benden, in his work upon Gregarinæ, first clearly pointed out this fact, that we must distinguish thoroughly between the plasson of cytods and the protoplasm of cells.
An irrefutable proof that such single-celled primæval animals like the amœba really existed as the direct ancestors of man, is furnished, according to the fundamental law of biogeny, by the fact that the human egg is nothing more than a simple cell.
The next step taken in advance is the division of the cell in two;—there arise from the single germinal spot two new kernel specks, and then, in like manner, out of the germinal vesicle two new cell-kernels. The same process of cell-division now repeats itself several times in succession, and the products of the division form a perfect union. This organism may be called a community of amœbæ (synamœbæ).
From the community of amœba morula, now arose ciliated larvæ. The cells lying on the surface extended hair-like processes or fringes of hair, which, by striking against the water, kept the whole body rotating—the lanceolate animals or amphioxus were thus first produced. Here we find from the synamœbæ which crept about slowly at the bottom of the Laurentian primeval ocean by means of movements like those of an amœba, that the newly-formed planæa by the vibrating movements of the cilia, the entire multicellular body acquired a more rapid and stronger motion, and passed over from the creeping to the swimming mode of locomotion. The planæa consisted, then, of two kinds of cells—inner ones like the amœbæ, and external "ciliated cells." The ancestors of man, which possessed the form value of the ciliated larva, is, of course, extinct at the present day.
| Fig I. | Fig. II. |
Fig. I.—The Norwegian Flimmer-ball (Magosphœra Planula), swimming by means of its vibratile fringes; seen from the surface.—Haeckel.
Fig. II.—The same in section. The pear-shaped cells are seen bound together in the centre of the gelatinous sphere by a thread-like process. Each cell contains both a kernel and a contractile vesicle. (Planæa Series.)—Haeckel.]
| Fig III. | Fig. IV. |
Figs. III and IV.—Represents Gastræa Series. The body consists merely of a simple primitive intestine, the wall of which is formed of two primary germ-layers.—Haeckel.