[Footnote 5: It has been maintained, indeed, that the phosphatic nodules so largely worked for agricultural purposes, are in themselves actual organic bodies or true fossils. In a few cases this admits of demonstration, as it can be shown that the nodule is simply an organism (such as a sponge) infiltrated with phosphate of lime (Sollas); but there are many other cases in which no actual structure has yet been shown to exist, and as to the true origin of which it would be hazardous to offer a positive opinion.]

The last lime-salt which need be mentioned is gypsum, or sulphate of lime. This substance, apart from other modes of occurrence, is not uncommonly found interstratified with the ordinary sedimentary rocks, in the form of more or less irregular beds; and in these cases it has a palæontological importance, as occasionally yielding well-preserved fossils. Whilst its exact mode of origin is uncertain, it cannot be regarded as in itself an organic rock, though clearly the product of chemical action. To look at, it is usually a whitish or yellowish-white rock, as coarsely crystalline as loaf-sugar, or more so; and the microscope shows it to be composed entirely of crystals of sulphate of lime.

We have seen that the calcareous or lime-containing rocks are the most important of the group of organic deposits; whilst the siliceous or flint-containing rocks may be regarded as the most important, most typical, and most generally distributed of the mechanically-formed rocks. We have, however, now briefly to consider certain deposits which are more or less completely formed of flint; but which, nevertheless, are essentially organic in their origin.

Flint or silex, hard and intractable as it is, is nevertheless capable of solution in water to a certain extent, and even of assuming, under certain circumstances, a gelatinous or viscous condition. Hence, some hot-springs are impregnated with silica to a considerable extent; it is present in small quantity in sea-water; and there is reason to believe that a minute proportion must very generally be present in all bodies of fresh water as well. It is from this silica dissolved in the water that many animals and some plants are enabled to construct for themselves flinty skeletons; and we find that these animals and plants are and have been sufficiently numerous to give rise to very considerable deposits of siliceous matter by the mere accumulation of their skeletons. Amongst the animals which require special mention in this connection are the microscopic organisms which are known to the naturalist as Polycystina. These little creatures are of the lowest possible grade of organisation, very closely related to the animals which we have previously spoken of as Foraminifera, but differing in the fact that they secrete a shell or skeleton composed of flint instead of lime. The Polycystina occur abundantly in our present seas; and their shells are present in some numbers in the ooze which is found at great depths in the Atlantic and Pacific oceans, being easily recognised by their exquisite shape, their glassy transparency, the general presence of longer or shorter spines, and the sieve-like perforations in the walls. Both in Barbadoes and in the Nicobar islands occur geological formations which are composed of the flinty skeletons of these microscopic animals; the deposit in the former locality attaining a great thickness, and having been long known to workers with the microscope under the name of "Barbadoes earth" (fig. 15).

In addition to flint-producing animals, we have also the great group of fresh-water and marine microscopic plants known as

Fig. 15.—Shells of Polycystina from "Barbadoes earth;" greatly magnified. (Original.)

Fig 16.—Cases of Diatoms in the Richmond "Infusorial earth;" highly magnified. (Original.) Diatoms, which likewise secrete a siliceous skeleton, often of great beauty. The skeletons of Diatoms are found abundantly at the present day in lake-deposits, guano, the silt of estuaries, and in the mud which covers many parts of the sea-bottom; they have been detected in strata of great age; and in spite of their microscopic dimensions, they have not uncommonly accumulated to form deposits of great thickness, and of considerable superficial extent. Thus the celebrated deposit of "tripoli" ("Polir-schiefer") of Bohemia, largely worked as polishing-powder, is composed wholly, or almost wholly, of the flinty cases of Diatoms, of which it is calculated that no less than forty-one thousand millions go to make up a single cubic inch of the stone. Another celebrated deposit is the so-called "Infusorial earth" of Richmond in Virginia, where there is a stratum in places thirty feet thick, composed almost entirely of the microscopic shells of Diatoms.

Nodules or layers of flint, or the impure variety of flint known as chert, are found in limestones of almost all ages from the Silurian upwards; but they are especially abundant in the chalk. When these flints are examined in thin and transparent slices under the microscope, or in polished sections, they are found to contain an abundance of minute organic bodies—such as Foraminifera, sponge-spicules, &c.—embedded in a siliceous basis. In many instances the flint contains larger organisms—such as a Sponge or a Sea-urchin. As the flint has completely surrounded and infiltrated the fossils which it contains, it is obvious that it must have been deposited from sea-water in a gelatinous condition, and subsequently have hardened. That silica is capable of assuming this viscous and soluble condition is known; and the formation of flint may therefore be regarded as due to the separation of silica from the sea-water and its deposition round some organic body in a state of chemical change or decay, just as nodules of phosphate of lime or carbonate of iron are produced. The existence of numerous organic bodies in flint has long been known; but it should be added that a recent observer (Mr Hawkins Johnson) asserts that the existence of an organic structure can be demonstrated by suitable methods of treatment, even in the actual matrix or basis of the flint.[6]