LECTURE III.
INORGANIC ELEMENTS IN THE UNIVERSE.
In view of the wide range of materials at command, and the limits of the present inquiry, there is need for some definite method of selection, which may secure a careful, though necessarily very general survey of the whole ground. That which seems to give most promise of meeting these requirements is the contemplation in order of the great leading conceptions which have received prominence within recent years in consequence of continued research under strictly scientific methods. These may be said to constitute the scientific revolution of the nineteenth century, giving occasion for reconstructing the popular conceptions of the universe. They claim to mark the truly scientific period, inaugurated by command of instruments never before within reach, allowing an immense advance in the modes of research, and placing the secrets of nature within compass of human observation as they had never been before. The intellectual conditions for observation and inference no doubt remain simply what they have been; the laws of intelligent inquiry are the same, determining sufficiency of evidence, and trustworthiness in reasoning; but the range of observation has been indefinitely multiplied, and things transcending previous conjecture have become matters of certain observation. The telescope and the microscope provided for this revolution. They brought the universe within range as it had never previously been, and thus making an enormous addition to the sum of human knowledge, suggested new modes of contemplating and explaining the facts which had been familiar through all the ages. There can be no reversal of all this—no return on the old methods. Nor can there be reversal in the sense of overturning presently recognized conclusions. There are indeed hosts of theories of which it may be safely predicted that they will be overturned and forgotten; but a veritable knowledge has been acquired, which will certainly be preserved among the treasures of the race. We now know the constituent elements of many forms of existence, and the laws which determine change and continuance, as these were never previously known; and thus there has been vastly extended for us the range of recognized facts.
To this advance, the whole human race has to adapt itself. It is not merely one class of men, but all; not merely one department of thought, but all departments which must adjust themselves to this new order of things. Religious thought is not thrown into any singular position; it merely shares in the common experience, that is, the common advantage. And we may say religious thought is most prepared for the mighty revolution. This startling success in unlocking the mysteries of nature; this sudden accession to the wealth of our ideas, apt to have an intoxicating effect upon those who value science and nothing higher, awakens reverence and gratitude in the religious thinker. The greater the application of human intelligence to the study of nature, and the greater the discoveries which reward such labor, so much greater becomes the demand upon intelligence in accounting for the origin and continuance of the universe, involving innumerable phases of activity never to be witnessed by ordinary observers who are absorbed in their daily avocations. The supernatural is not more remote from us by such discoveries as science can boast, but is in reality brought nearer. The fancy that enlarged knowledge of the natural, is steadily driving before it all recognition of the supernatural, is one of which thinking men will by and by be ashamed. That men should consider the discovery of the component parts of certain forms of existence, or of the laws of well known movements, as a final disposal of the demands of intelligence, only shows how little the intellect of inquirers has been prepared for appreciation of the full demands of reason. In this connection, it should be remembered that the most profoundly scientific, have been the most cautious, least inclined to boast of discovery, or to anticipate the overthrow of the deeper convictions of the moral and spiritual life, which, as the necessaries of life in all ages, are least liable to be touched by any thing belonging to the region of science. Even after every allowance has been made for sanguine and passionate temperament, and for reaction against untenable forms of religious belief among opponents of religion,[AB] the award can not be otherwise than suggested. The facts are already on record bearing on the most testing period,—the transition from an old and restricted knowledge, to a new and greatly enlarged knowledge of the universe,—and the roll of names standing high in the annals of science, while devoted to religious faith and practice, may be accepted as a reasonable forecast of coming results.[AC]
That greater knowledge of nature by discovery of the natural causes in operation, intensifies the rational demand for recognition of Supernatural Intelligence, is the position to be maintained throughout this argument. The most rigid test of this position is to be found in the outstanding scientific conceptions concerning inorganic and organic nature, and the contrasts recognized between lower and higher organisms. The order most suitable for application of this test is progress upwards from the most subordinate forms of existence to the most complex organism. A beginning will, therefore, be male with the inorganic world, after which lower organisms may be considered, after that the relative place of higher organisms, and finally the whole class of questions concerning the powers and requirements of mind. In each of these relations, I desire to inquire into the reasonableness of our acknowledgment of the supernatural.
As the world presents a vast range of inorganic existence, we have to consider the most prominent scientific conceptions concerning inorganic elements, as these afford a general view of the material structure of the earth.
Concentrating on this region of observation, and taking no account, meanwhile, of the manifold phases of life, there are two forms of existence to be recognized, Matter and Energy. Matter is solid, visible, tangible; Energy is invisible and intangible, but measurable by the work it is capable of doing. The one may be represented as the solid inert mass, the other as the moving power whose action is the source of continual change. This duality we must regard as essential to the structure of the universe, for it is impossible to identify the two, so as to regard the world as merely a mass of matter. This duality is now commonly admitted as the result of recent scientific investigations. To quote the words of Professor Tait,—"It is only within comparatively recent years that it has been generally recognized that there is something else in the physical universe which possesses to the full as high a claim to objective reality as matter possesses, though it is by no means so tangible, and therefore the conception of it was much longer in forcing itself upon the human mind."[AD] This is Energy. "Just as gold, lead, oxygen, etc., are different kinds of matter, so sound, light, heat, etc., are now ranked as different forms of energy."[AE]
Here, then, is one of the conspicuous results of recent scientific research to which all our thoughts and theories need to adapt themselves. And it must be obvious without argumentation, that theological thought will not experience any serious shock, or even jolt, in passing over to this new line of rails prepared for it.
Taking these two, Matter and Energy, as distinct, let us concentrate for a little upon each of them separately. Let us first turn attention upon Matter. This form of existence is most easily contemplated, as most directly presenting itself to observation. A piece of metal may best serve for illustration, such as the iron out of which we form so many of our industrial implements. This metal may be mingled through earth or rock; it may be held in solution in water, or made to flow out in liquid form from the furnace; it may be hardened either in the more brittle form of cast iron, or in the more rigid form known as malleable; but through all these changes the material is the same. Further, suppose we were to receive a quantity of ore, and for the sake of experiment were to have part presented in each one of these forms, the quantity would continue exactly the same as was originally received. To quote again from the same author:—"The grand test of the reality of what we call Matter, the proof that it has an objective existence, is its indestructibility and uncreatability—if the term may be used—by any process at the command of man. The value of this test to modern chemistry can scarcely be estimated. In fact we can barely believe that there could have existed an exact science of chemistry had it not been for the early recognition of this property of matter; nor in fact would there be the possibility of a chemical analysis, supposing that we had not the assurance by enormously extended series of previous experiments, that no portion of matter, however small, goes out of existence, or comes into existence in any operation whatever. If the chemist were not certain that at the end of his operations, provided he has taken care to admit nothing and to let nothing escape, the contents of his vessels must be precisely the same in quantity as at the beginning of the experiment, there could be no such thing as chemical analysis."[AF]
If now we press our inquiry further, seeking some explanation of the ultimate nature or structure of matter, that is, the common physical characteristics of matter in all its forms, whether air, water, or solid mass, science has no certain answer to give. There is no theory of the ultimate structure of matter which has secured general acceptance. On the contrary, there is the acknowledgment that the complexity of the problem is so great as completely to baffle the present resources of science. There have been discussions, and careful investigations as to the divisibility of matter, and it has been generally admitted on rational grounds, that there must be in all matter particles or atoms so minute as to be quite beyond the range of the microscope. This has led to the acceptance of an atomic theory as in one form or another applicable to the structure of matter, belief in such particles or molecules being a natural result of scientific procedure. I say belief, for the existence of such ultimate atoms is not established on experimental evidence, and yet is generally acknowledged; for it is clearly enough recognized that there is a region of faith for science, as for theology, just as there must be for all ordinary exercise of human intelligence. Besides the actual divisibility of matter, we have in the same connection to consider its compressibility, for the recognized facts as to compression of iron, for example, or of any metal, seem to imply that there are certain particles related to each other, which can be pressed in upon each other, or brought into nearer proximity. There is, however, a clear limit to compressibility, as there is to divisibility of matter. Even if this be granted, however, we are still without a scientific account of the ultimate structure of matter. This is still a perplexity to be handed on to future workers. There may, indeed, seem to be promise of aid in the analysis of different forms of matter, as in the reduction of water to its constituent gases by the action of a galvanic battery; but such processes, however rich in suggestiveness, are insufficient to advance the main inquiry. It is oftentimes in this very class of experiments, that science at once manifests its power, and discovers the limits which encircle and restrain its efforts. It can decompose, what it can not recompose, thus leaving difficulties as perplexing as before. And besides, even when by analysis the ultimate parts or chemical constituents, of compound substances have been discovered, science is unable to demonstrate that the constituent elements are ultimately composed of distinct atoms, as for example that oxygen and hydrogen are so constituted. We are thus without a science of the ultimate nature of matter. There is, indeed, the suggestion of Sir William Thomson that matter of all kinds may be regarded as of a common nature, only variously compounded, filling space in a fluid state, and that its compressibility can be accounted for on the supposition that its ultimate forms are vortex rings capable of compression and expansion like an india-rubber ball; but this can not be regarded otherwise than as a bold conjecture, beset with a host of difficulties both physical and mathematical which neither Thomson nor any of his fellow-workers in physical science, professes to have yet grappled with.