Entering now, therefore, on the contemplation of animal life, regarded as a higher order, distinguishable from vegetable life, we have the outstanding characteristics of sensibility and locomotion. Whether there is a distinct line of demarcation between vegetable and animal does not require special attention, for no matter of controversy on this point can delay procedure. There is, as already remarked, in the vegetable kingdom a singular approximation towards animal life, in so far as we have evidence of sensibility to touch among the plants, to a degree which appears wonderful chiefly by contrast with the common characteristics of the vegetable kingdom.

On the other hand, sensibility to influences operating from without is a common feature of animal life. Even the very lowest orders of animals are sensitive to touch, and as this form of experience is closely connected with power of locomotion, all animals have the conditions of their life largely affected by interference with their own movements, or resistance offered, whether by objects lying in their way, or by some force restraining their progress, or causing movement in an opposite direction. Now these two characteristics—sensibility to impression from without, and movement caused by an exercise of energy from within the organism itself—are both provided for by means of the nerve system belonging to the animal. This nerve system varies in the number and complexity of its arrangements, according to the complexity of the organism with which it is associated. As, therefore, we rise in the scale, passing from the soft pulpy form of the lowest orders, to those formed in segments or rings, next to those with distinct portions of organism fulfilling separate functions, as in insect life, with head, body, and legs; and next pass up to the vertebrates, with back-bone and skeleton, on which is built up a more or less complicated muscular system, we find a nerve system, growing in complexity along with the appearance of different organs of the body. And in all cases, this system fulfils these two functions—sensibility to touch, and movement of the body. These two are provided for by distinct lines or nerve fibres; and in all cases, these two sets are combined in a centre, thereby securing that the two sets be coöperative, unitedly contributing to the management of the living organism. This appears even if we take for illustration an organism so low as the ascidian mollusk, which floats in the water as if it were a sack drawn together towards the top, bulging out below; and which is nourished simply by the passing of a current of water in at the mouth, and out at a vent towards the lower end of the sac. A series of nerve lines comes from the mouth; a distinct ramification spreads over the lower portion of the sac; and these two are united in a single knot or ganglion, a little above the vent. By these contrivances, this little body, though for the most part stationary, is sensitive to the approach of any thing injurious, and by contraction of its mass expels the water with considerable force, driving the injurious matter to a distance. This combination of the two sets of nerves appears more strikingly in such an animal as the centipede, along whose body are successive groups of nerves, combined in regular order in a series of knots, and united longitudinally by connecting threads, attaching the successive knots. The same plan is carried up into a more articulated form in the case of the winged insect, with head, antennæ or feelers projecting from the head, wings, and legs, leading to a more marked appearance of separate combinations, giving greater prominence to the head. When from this we rise to the fish, thence to the bird, thence to the quadruped, we find the head made conspicuously the central organ of the entire nerve system of the animal, while it occupies the front position in the body. It is no longer one of a set or series of knots; nor even the largest or more conspicuous in a graduated order of centres; but in the head of the animal is found that which is the true nerve centre for the whole nerve system, designated the brain. In the case of the vertebrates, not only does the skeleton afford the solid frame-work on which the muscular system is built, but the back-bone contains within it the main column of nerve fibres, which are given out at the several joints according to the requirements of the body.

If meanwhile we concentrate attention on our own bodies, we may by the aid of personal experience find easy illustration of the prominent features of the nerve system. We shall take first the two distinct lines of nerves already mentioned, the one set concerned with sensibility, the other with movement of the muscles. From the tips of the fingers there run lines of nerve fibre, which are brought into combination at the wrist, and are carried up the arm, and onward by the shoulder and upper portion of the back-bone to the head. These are the nerves of sensibility, by means of which, as by telegraph wires, the slightest impression made on the tips of the fingers is instantly conveyed to the great nerve centre in the brain. Distinct from these is another set of nerves issuing from the brain, and descending the arm, giving off its fibres as it passes to the several muscles above the elbow, next to those above the wrist, and next to the muscles of the hand and fingers. These are the nerves of movement, by means of which the whole arm may be brought into action at pleasure, or the hand may be set to work, while the arm is at rest.

These two sets of nerves—the sensory and motor—are exactly similar in structure, consisting of an outer covering, within which floating in a white fluid is a thread which constitutes the nerve proper. The outer covering provides for isolation of the fibre, from other fibres laid alongside of it, just as copper wire is isolated by a gutta-percha covering when the two connecting lines from an electric battery are laid down in close proximity as in the arrangement for electric bells. By this provision the nerve fibres are completely isolated making it possible to distinguish sensory impressions so as to tell which finger has been touched. The similarity of structure in the two lines of nerves is a striking fact in view of the completely distinct functions fulfilled. This leads to a special explanation of the provision for different modes of action. This is secured by diversity in the terminal arrangements for the two classes of nerves. The nerves of sensibility have a peculiarly sensitive arrangement spread under the skin, constituting an end-bulb or touch organ. In certain parts of the body more sensitive than others, such as the tips of the fingers, there are additional minute corpuscles, grouped alongside of the nerve, liable to contract under the slightest pressure, and which add greatly to the sensitiveness of the particular parts about which they cluster. The terminal arrangements of the motor nerves are quite different. The nerve fibres pass into the substance of the muscle to be moved by them, and the nerve fibre is subdivided and distributed, so as to bring the several parts of the muscle under control. These fibres are so laid and connected, that a whole set of muscles can be moved simultaneously, being made to work in perfect harmony.

The vital activity of this whole arrangement of nerve fibres, including sensory and motor in one system, depends upon living connection of all with the great nerve centre in the brain, where the nerve energy is provided which keeps all in functional activity. Only, there is this striking difference with the two sets of fibres, that in the case of the sensory nerve the pulsation of energy is upwards to the brain, in the case of the motor nerve it is downwards towards the muscle. There is no scientific explanation yet reached of this contrast of molecular action. But by means of it the one order of nerves plays the part of a vehicle of impression providing for knowledge of what is without, the other order fulfils the part of an instrument for moving the muscular system which is part of the organism itself.

Diagram of Cerebro-Spinal Nerve Centres. DARK REPRESENTING SENSORY; THE LIGHT, MOTOR CENTRES. THE ARROWS INDICATE THE DIRECTION OF THE CURRENT OF INFLUENCE.

Nerve System of the Insect, showing distinct centres.

These two orders are not, however, to be regarded as separate systems quite apart from each other, but as two sides of one system, which are essentially and closely related to each other. There is a provision for combined action of the two sets, so that an impulse communicated along a sensory nerve or set of nerves, may pass over to the motor system and terminate in muscular activity. This is most simply illustrated by the circumstance that the nerves of sensibility become instruments of pain, when a severe shock or blow is given, or some injury is inflicted. Suffering becomes a signal of risk and instantly the injured part shrinks or starts away from the source of suffering. This is a phase of sensori-motor activity illustrating a law which has a wide range of application in animal life. This sketch of the arrangements and functions of the two sides of the nerve system though traced in view of its application to human nature, will suffice to indicate the general plan in accordance with which sensibility and muscular activity are provided for in the animal kingdom generally. The ramification of the nerve lines will in each case be according to the simplicity or complexity of structure belonging to the animal; but the provisions for sensitiveness to touch, and power of movement are in all cases the same. Fish, bird, and quadruped are alike sensitive to touch, and they are alike capable of movement, though the mechanical contrivances by which locomotion is secured vary greatly; but a double distribution of nerve fibres in all cases provides for these two characteristics of animal life.