In order to give an idea of the method of using a grinding and polishing machine, the following extract from the workshop note-book is introduced:—

“A disk of plate glass 15 1/2 inches in diameter, and 1 1/4 inch thick was procured. It had been polished flat on both sides, so that its internal constitution might be seen.[4] It was fastened upon the table b of the machine, by four blocks of wood as at c, Fig. [21]. Underneath the glass were three thick folds of blanket, 15 inches in diameter, to prevent scratching of the lower face, and avoid risk of fracture. A convex disk of lead weighing 40 pounds having been cast, was laid upon the upper surface of the glass, and then the screw l was depressed so as to catch in a perforated iron plate n, at the back of the lead m, and press downward strongly.

“Emery as coarse as the head of a pin having been introduced, through a hole in the lead, motion was commenced and continued for half an hour, an occasional supply of emery being given. The machine made 150 eight-inch cross strokes, and the mirror 50 revolutions per minute. The grinder m was occasionally restrained from turning by the hand. At the end of the time the detritus was washed away, and an examination with the gauge made. A spot 11 inches in diameter, and  1/60 of an inch deep, was found to have been ground out. The same process was continued at intervals for ten hours, measurements with the gauge being frequently made. The concave was then sufficiently deep. The leaden grinder was kept of the right convexity by beating it on the back when necessary. A finer variety of coarse emery, and after that flour emery were next put on, each for an hour. These left the surface moderately smooth, and nearly of the right focal length. The leaden grinder was then dismissed, and the iron one, Fig. [6], put in its stead. The mirror was removed from its place, and ground upon a large piece of flat glass for ten minutes, to produce a circular outline to the concavity. It was cemented with soft pitch to the concave iron disk, the counterpart of Fig. [6], and again recentred on the blanketed table b. Emeries of 3 and 20 seconds, and 1, 3, 10, 30, 60 minutes’ elutriation were worked on it, an hour each. The rate of cross motion was reduced to 25 per minute to avoid heating, the mirror still revolving once for every three cross strokes. The screw pressure of l was stopped. This produced a surface exquisitely fine, semi-transparent, and appearing as if covered with a thin film of dried milk. It could reflect the light from objects outside the window until an incidence of 45 degrees was reached, and at night was found to be bright enough for a preliminary examination at the centre of curvature.

“The polisher was constructed in the usual way (page [12]), and being smeared with rouge was fastened to the table b, where the mirror had been. The latter warmed in water to 120° F., was then put face downwards upon the former, and the screw l so lowered as to cause no pressure. The machine was allowed to make 20 four-inch cross strokes per minute, and the polisher to revolve once for every three strokes. The mirror being unconstrainedly supported on the polisher, was irregularly rotated by hand, or rather prevented from rotating with the polisher. The tendency of this method is to produce an almost spherical surface. To change it to a paraboloid, it was only necessary when the glass was polished all over to increase the length of the stroke to 8 inches, and continue working fifteen minutes at a time, examining in the intervals by the tests at the centre of curvature. The production of a polish all over occupied about two hours, but the correction of figure took more time, on account of the frequent examinations, and the absolute necessity of allowing the mirror to come back to a state of equilibrium from which it had been disturbed when worked on the machine.” I have seen a mirror which was parabolic when just off the machine, by cooling over night become spherical. And these heat changes are often succeeded by other slower molecular movements, which continue to modify a surface for many days after.

This correction, where time and not length of stroke is the governing agent, has once or twice been accomplished in fifteen minutes, but sometimes has cost several hours. If the figure should have become a hyperboloid of revolution, that is, have its edge zones too long in comparison with the centre, it is only necessary to shorten the stroke to bring it back to the sphere, or even to overpass that and produce a surface in which at the centre of curvature the edge zones have too short a focal length (Fig. [12]).

Very much less trouble from zones of unequal focal length was experienced after this machine and system of working were adopted. This was owing probably partly to the element of irregularity in the rotation of the mirror, and partly to the fact that the surface is kept spherical until polished, and is then rapidly changed to the paraboloid. Where the adjustments of an apparatus are made so as to attempt to keep a surface parabolic for some hours, there is a strong tendency for zones to appear, and of a width bearing a fixed relation to the stroke.

The method of producing reflecting surfaces next to be spoken of, is however that which has finally been adopted as the best of all, being capable of forming mirrors which are as perfect as can be, and yet only requiring a short time. It is the correction of a surface by local retouches. In the account published by M. Foucault, it appears that he is in France the inventor of this improvement.

Fig. 23.

Local Polisher.