The first photographic representations of the moon ever made, were taken by my father, Professor John W. Draper, and a notice of them published in his quarto work “On the Forces that Organize Plants,” and also in the September number, 1840, of the London, Edinburgh, and Dublin Philosophical Magazine. He presented the specimens to the New York Lyceum of Natural History. The Secretary of that Association has sent me the following extract from their minutes:—
“March 23d, 1840. Dr. Draper announced that he had succeeded in getting a representation of the moon’s surface by the Daguerreotype.... The time occupied was 20 minutes, and the size of the figure about 1 inch in diameter. Daguerre had attempted the same thing, but did not succeed. This is the first time that anything like a distinct representation of the moon’s surface has been obtained.
“Robt. H. Brownne, Secretary.”
As my father was at that time however much occupied with experiments on the Chemical Action of Light, the Influence of Light on the Decomposition of Carbonic Acid by Plants, the Fixed Lines of the Spectrum, Spectrum Analysis, &c., the results of which are to be found scattered through the Philosophical Magazine, Silliman’s Journal, and the Journal of the Franklin Institute, he never pursued this very promising subject. Some of the pictures were taken with a three inch, and some with a five inch lens, driven by a heliostat.
In 1850, Mr. Bond, taking advantage of the refractor of 15 inches aperture at Cambridge, obtained some fine pictures of the moon, and subsequently of double stars, more particularly Mizar in Ursa Major. The driving power, in this instance, was also applied to move the telescope upon a polar axis.
Besides these, several English and continental observers, Messrs. Hartnup, Phillips, Crookes, Father Secchi, and others, have worked at this branch of astronomy, and, since 1857, Mr. Lewis M. Rutherfurd, of New York, has taken many exquisite lunar photographs, which compare favorably with foreign ones.
But in none of these instances has the use of the sliding plate-holder been persisted in, and its advantages brought into view. In the first place it gets rid completely of the difficulties arising from the moon’s motion in declination, and in the second, instead of injuring the photograph by the tremors produced in moving the whole heavy mass of a telescope weighing a ton or more, it only necessitates the driving of an arrangement weighing scarcely an ounce.
My first trials were with a frame to contain the sensitive plate, held only at three points. Two of these were at the ends of screws to be turned by the hands, and the third was on a spring so as to maintain firm contact. This apparatus worked well in many respects, but it was found that however much care might be taken, the hands always caused some tremor in the instrument. It was evident then that the difficulty from friction which besets the movements of all such delicate machinery, and causes jerking and starts, would have to be avoided in some other way.
I next constructed a metal slide to run between two parallel strips, and ground it into position with the greatest care. This, when set in the direction of the moon’s apparent path, and moved by one screw, worked better than the preceding. But it was soon perceived that although the strips fitted the frame as tightly as practicable, an adhesion of the slide took place first to one strip and then to the other, and a sort of undulatory or vermicular progression resulted. The amount of deviation from a rectilinear motion, though small, was enough to injure the photographs. At this stage of the investigation the regiment of volunteers to which I belonged was called into active service, and I spent several months in Virginia.
Fig. 32.