Fig. 37.

Dr. Draper’s Observatory.

An uninterrupted horizon is commanded in every direction, except where trees near the dwelling house cut off a few degrees toward the southwest. The advantages of the location are very great, and often when the valleys round are filled with foggy exhalations, there is a clear sky over the Observatory, the mist flowing down like a great stream, and losing itself in the chasm through which the Hudson here passes.

The foundation and lower story of the building are excavated out of the solid granite, which appears at the edge of the hill. This arrangement was intended to keep the lower story cool, and avoid, in the case of the metal reflector, sudden changes of temperature. The eastern side of the lower story, however, projects over the brow of the hill, and is therefore freely exposed to the air, furnishing, when desired, both access and thorough ventilation through the door. The second story or superstructure is of wood, lined inside with boards like the story below. They serve to inclose in both cases a non-conducting sheet of air.

The inside dimensions of both stories taken together are 17 1/2 feet square, and 22 feet high, to the apex of the dome. This space is unnecessarily large for the telescope, which only requires a cylinder 13 feet in diameter and 13 feet high. A general idea of the internal arrangement is gained from Fig. [28]. In Fig. 38, a a′ is the floor of the gallery, b b′ b″ the circular aperture in which the telescope c c′ turns. The staircase is indicated by d. The Enlarger, §6, rests on the shelf e, the heliostat being outside at f. The door going into the photographic room is at g, h h′ are tables, i the water tank, k the tap and sink, l the stove, m a heliostat shelf, n the door, o the window.

Fig. 38.

Plan of Observatory (upper floor).

The building is kept ventilated by opening the door in the lower part, and the dome shutter, seen in Fig. [37], for some time before using the instrument. On a summer day the upper parts, and especially those close under the dome, become without this precaution very hot, and this occurred even before the tin roof was painted. Bright tinplate seems not to be able to reflect by any means all the heat that falls upon it, but will become so warm in July that rosin will melt on it, and insects which have lighted in a few moments dry up, and soon become pulverizable. A knowledge of these facts led to the abandonment of wooden sheathing under the tin, for without it when night comes on the accumulated heat radiates away rapidly, and ceases to cause aerial currents near the telescope.