I have made all the parts of this apparatus so that they can be easily separated or changed. The flat mirrors are of silvered glass, and are used with the silvered side toward the light, to avoid the double image produced when reflection from both sides of a parallel plate of glass is permitted. The large concave mirror happens to be of speculum metal, but it can be repolished if necessary by means of a four inch polisher, passed in succession over every chord of the face. A yellow film of tarnish easily accumulates on metal specula if they are not carefully kept, and decreases their photographic power seriously.
Of the making of Reverses.—In addition to the use of the Enlarger for magnifying, it is found to have important advantages in copying by contact. The picture of the image of the moon produced in the telescope is negative, that is, the lights and shades are reversed. In enlarging such a negative reversal again takes place, and a positive results. This positive cannot, however, be used to make prints on paper, because in that operation reversing of light and shade once more occurs. It is necessary then at some stage to introduce still another reversal. This may be accomplished either by printing from the original negative a positive, which may be enlarged, or else printing from the enlarged positive a negative to make the paper proofs from. In either case a collodion film, properly sensitized, is placed behind the positive or negative, and the two exposed to light.
If diffused light or lamplight is used, the two plates must be as closely in contact as possible, or the sharpness of the resulting proof is greatly less than the original. This is because the light finds its way through in many various directions. If the two plates, however, are placed in the cone of sunlight coming from the Enlarger, and at a distance of fifteen or twenty feet from it, the light passes in straight lines and only in one direction through the front picture to the sensitive plate behind. I have not been able to see under these circumstances any perceptible diminution in sharpness, though the plates had been 1/16 of an inch apart. It is perfectly feasible to use wet collodion instead of dry plates, no risk of scratching by contact is incurred, and the whole operation is easily and quickly performed. The time of exposure, 5 seconds, is of convenient length, but may be increased by putting a less reflecting surface or an unsilvered glass mirror in the heliostat. A diaphragm with an aperture of half an inch if placed at e, Fig. [46], to shut out needless light, and avoid injuring the sharpness of the reverse by diffusion through the room. In enlarging other diaphragms are also for the same reason put in the place of this one. For a half moon for instance, a yellow paper with a half circular aperture, whose size may be found by trial in a few minutes, is pinned against e.
The enlarged pictures obtained by this apparatus are much better than can be obtained by any other method known at present. The effect, for instance, of a portrait, made life-size, is very striking. Some astronomers have supposed that advantages would arise from taking original lunar negatives of larger size in the telescope, that is, from enlarging the image two or three times by a suitable eyepiece or concave achromatic, before it reached the sensitive plate. But apart from the fact that a reflector would then have all the disadvantages of an achromatic, the atmospheric difficulties, which in reality constitute the great obstacle to success, would not be diminished by such means. The apparent advantage, that of not magnifying defects in the collodion, is not of much moment, for when development of the photographs is properly conducted, and thorough cleanliness practised, imperfections are not produced, and the size of the silver granules is not objectionable.
b. High Powers.
Although negatives of astronomical objects have not as yet been made which could stand the high powers of the arrangement about to be described, yet they bear the lower powers well, and give promise of improvement in the future.
Photography of microscopic objects as usually described, consists in passing a beam of light through the transparent object into the compound body of the microscope, and receiving it on its exit from the eyepiece upon a ground glass or sensitive plate. The difficulty which besets the instrument generally, and interferes with the production of fine results, arises from the uncertainty of ascertaining the focus or place for the sensitive plate. For if the collodion film be put where the image on ground glass seems best defined, the resulting photograph will not be sharp, because the actinic rays do not form their image there, but either farther from or nearer to the lenses, depending on the amount of the chromatic correction given by the optician. Practically by repeated trials and variation of the place of the sensitive compound, an approximation to the focus of the rays of maximum photographic intensity is reached.
Fig. 47.
Microscope for Photography.