Land which has been puddled by the tread of cattle, or by wheels, acquires a peculiar consistency, and a singular capacity to hold water. Certain clays are wet and beaten up into this consistency, to form the bottoms of ponds, and to tighten dams and reservoirs. A soil thus puddled, requires careful treatment to again render it permeable to water, and fit for cultivation. This puddling process is constantly going on, under the feet of cattle, under the plow and the cart-wheels, wherever land containing clay is worked upon in a wet state. Thus, by performing a day's work on wet land, we often render necessary as much additional labor as we perform, to cure the evil we have done.

We may haul loads without injury on drained land. On many farms, it is difficult to select a season for hauling out manure, or carting stones from place to place, when great injury is not done to some part of the land by the operation. Many farmers haul out their manure in Winter, to avoid cutting up their farms; admitting that the manure is wasted somewhat by the exposure, but, on the whole, choosing this loss as the lesser evil. In spreading manure in Spring, we are often obliged to carry half loads, because the land is soft, not only to spare our beasts, but also to spare our land the injury by treading it. Drained land is comparatively solid, especially in Spring, and will bear up heavy loads with little injury.

Drained land is least injured by cattle in feeding. Whether it is good husbandry to feed our mowing fields at any time, is a question upon which farmers have a right to differ. Without discussing the question, it is enough for our purpose, that most farmers feed their fields late in the Autumn. Whether we approve it, or not, when the pastures are bare and burnt up, and the second crop in the home-field is so rich and tempting, and the women are complaining that the cows give no milk, we usually bow to the necessity of the time, and "turn in" the cows. The great injury of "Fall-feeding" is not usually so much the loss of the grass-covering from the field, as the poaching of the soil and destruction of the roots by treading. A hard upland field is much less injured by feeding, than a low meadow, and the latter less in a dry than a wet season. By drainage, the surplus water is taken from the field. None can stand upon its surface for a day after the rain ceases. The soil is compact, and the hoofs of cattle make little impression upon it, and the second or third crop may be fed off, with comparatively little damage.

Weeds are easily destroyed on drained land. If a weed be dug or pulled up from land that is wet and sticky, it is likely to strike root and grow again, because earth adheres to its roots; whereas, a stroke of the hoe entirely separates the weeds in friable soil from the earth, and they die at once. Every farmer knows the different effect of hoeing, or of cultivating with the horse-hoe or harrow, in a rain storm and in dry weather. In one case, the weeds are rather refreshed by the stirring, and, in the other, they are destroyed. The difference between the surface of drained land and water-soaked land is much the same as that between land in dry weather under good cultivation, and land just saturated by rain.

Again, there are many noxious weeds, such as wild grasses, which thrive only on wet land, and which are difficult to exterminate, and which give us no trouble after the land is lightened and sweetened by drainage. Among the effects of drainage, mainly of a chemical nature, on the soil, are the following:

Drainage promotes absorption of fertilizing substances from the air. The atmosphere bears upon its bosom, not only the oxygen essential to the vitality of plants, not only water in the form of vapor, to quench their thirst in Summer droughts, but also various substances, which rise in exhalations from the sea, from decomposing animals and vegetables, from the breathing of all living creatures, from combustion, and a thousand other causes. These would be sufficient to corrupt the very air, and render it unfit for respiration, did not Nature, with her wondrous laws of compensation, provide for its purification. It has already been stated, how the atmosphere returns to the hills, in clouds and vapor, condensed at last to rain, all the water which the rivers carry to the sea; and how the well-drained soil derives moisture, in severest time of need, from its contact with the vapor-loaded air. But the rain and dew return not their waters to the earth without treasures of fertility. Ammonia, which is one of the most valuable substances found in farm-yard manures, and which is a constant result of decomposition, is absorbed in almost incredible quantities by water. About 780 times its own bulk of ammonia is readily absorbed by water at the common temperature and pressure of the atmosphere; and, freighted thus with treasures for the fields, the moisture of the atmosphere descends upon the earth. The rain cleanses the air of its impurities, and conveys them to the plants. The vapors of the marshes, and of the exposed manure heaps of the thriftless farmer, are gently wafted to the well-drained fields of his neighbor, and there, amidst the roots of the well-tilled crops, deposit, at the same time, their moisture and fertilizing wealth.

Of the wonderful power of the soil to absorb moisture, both from the heavens above and the earth beneath—by the deposition of dew, as well as by attraction—we shall treat more fully in another chapter. It will be found to be intimately connected with the present topic.

Thorough drainage supplies air to the roots. Plants, if they do not breathe like animals, require for their life almost the same constant supply of air. "All plants," says Liebig, "die in soils and water destitute of oxygen; absence of air acts exactly in the same manner as an excess of carbonic acid. Stagnant water on a marshy soil excludes air, but a renewal of water has the same effect as a renewal of air, because water contains it in solution. When the water is withdrawn from a marsh, free access is given to the air, and the marsh is changed into a fruitful meadow." Animal and vegetable matter do not decay, or decompose, so as to furnish food for plants, unless freely supplied with oxygen, which they must obtain from air. A slight quantity of air, however, is sufficient for putrefaction, which is a powerful deoxydizing process that extracts oxygen even from the roots of plants.

We are accustomed to think of the earth as a compact body of matter, vast and inert; subject, indeed, to be upheaved and rent by volcanoes and earthquakes, but as quite insensible to slight influences which operate upon living beings and upon vegetation. This, however, is a great mistake; and it may be interesting to refer to one or two facts, which illustrate the wonderful effect of changes of the atmosphere upon the soil, and upon the subterranean currents of the earth. The following is from remarks by Mr. Denton, in a public address:

"But, as a proof of the sensibility of a soil drained four feet deep, to atmospheric changes, I may mention, that my attention has been, on more than one occasion, called to the circumstance that drains have been observed to run, after a discontinuance of that duty, without any fall of rain on the surface of the drained land; and, upon reference to the barometer, it has been found that the quicksilver has fallen whenever this has occurred. Mr. George Beaumont, jun., who first afforded tangible evidence of this extraordinary circumstance, has permitted me to read the following extracts of his letter: