"We pass on now to Fig. [93]. Here we find a different state of matters. The canals are open and freely supplied with air, while the pores are filled with water; and consequently you perceive that, while the seed a has quite enough of air from the canals, it can never be without moisture, as every particle of soil which touches it, is well supplied with this necessary ingredient. This, then, is the proper condition of soil for germination, and in fact for every period of the plant's development; and this condition occurs when soil is moist but not wet—that is to say, when it has the color and appearance of being well watered, but when it is still capable of being crumbled to pieces by the hands, without any of its particles adhering together in the familiar form of mud.
"Turning our eyes to Fig. [94], we observe still another condition of soil. In this instance, as far as water is concerned, the soil is in its healthy condition—it is moist, but not wet, the pores alone being filled with water. But where are the canals? We see them in a few places, but in by far the greater part of the soil none are to be perceived; this is owing to the particles of soil having adhered together, and thus so far obliterated the interstitial canals, that they appear only like pores. This is the state of matters in every clod of earth, b; and you will at once perceive, on comparing it with c, which represents a stone, that these two differ only in possessing a few pores, which latter, while they may form a reservoir for moisture, can never act as vehicles for the food of plants, as the roots are not capable of extending their fibres into the interior of a clod, but are at all times confined to the interstitial canals.
"With these four conditions before us, let us endeavor to apply them practically to ascertain when they occur in our fields, and how those which are injurious may be obviated.
"The first of them, we perceive, is a state of too great dryness, a very rare condition, in this climate at least; in fact, the only case in which it is likely to occur is in very coarse sands, where the soil, being chiefly made up of pure sand and particles of flinty matter, contains comparatively much fewer pores; and, from the large size of the individual particles, assisted by their irregularity, the canals are wider, the circulation of air freer, and, consequently, the whole is much more easily dried. When this state of matters exists, the best treatment is to leave all the stones which occur on the surface of the field, as they cast shades, and thereby prevent or retard the evaporation of water.
"We will not, however, make any further observations on this very rare case, but will rather proceed to Fig. [92], a much more frequent, and, in every respect, more important condition of soil: I refer to an excess of water.
"When water is added to perfectly dry soil, it, of course, in the first instance, fills the interstitial canals, and from these enters the pores of each particle; and if the supply of water be not too great, the canals speedily become empty, so that the whole of the fluid is taken up by the pores: this, we have already seen, is the healthy condition of the soil. If, however, the supply of water be too great, as is the case when a spring gains admission into the soil, or when the sinking of the fluid through the canals to a sufficient depth below the surface is prevented, it is clear that these also must get filled with water so soon as the pores have become saturated. This, then, is the condition of undrained soil.
"Not only are the pores filled, but the interstitial canals are likewise full; and the consequence is, that the whole process of the germination and growth of vegetables is materially interfered with. We shall here, therefore briefly state the injurious effects of an excess of water, for the purpose of impressing more strongly on your minds the necessity of thorough-draining, as the first and most essential step towards the improvement of your soil.
"The first great effect of an excess of water is, that it produces a corresponding diminution of the amount of air beneath the surface, which air is of the greatest possible consequence in the nutrition of plants; in fact, if entirely excluded, germination could not take place, and the seed sown would, of course, either decay or lie dormant.
"Secondly, an excess of water is most hurtful, by reducing considerably the temperature of the soil: this I find, by careful experiment, to be to the extent of six and a-half degrees Fahrenheit in Summer, which amount is equivalent to an elevation above the level of the sea of 1,950 feet.
"These are the two chief injuries of an excess of water in soil which affect the soil itself. There are very many others affecting the climate, &c.; but these not so connected with the subject in hand as to call for an explanation here.