"The filtration from April to September is very small—practically nothing; but during those months we have 12.67 inches of rain—that is, we have two inches a month for evaporation besides the quantity in the earth on the first day of April. From October to March we have 10.39 inches filtered out of 13.95 inches, the whole fall. 'Of this Winter portion of 10.39, we must allow at least six inches for floods running away at the time of the rain, and then we have only 4.39 inches left for the supply of rivers and wells.' (Breadmore, p. 34.)

"It is calculated in England that the ordinary Summer run of streams does not exceed ten cubic feet per minute per square mile, and that the average for the whole year, due to springs and ordinary rains, is twenty feet per minute per square mile, exclusive of floods—and assuming no very wet or high mountain districts (Breadmore, p. 34)—which is equal to about four inches over the whole surface. If we add to this the six inches that are supposed to run off in freshets, we have ten inches discharged in the course of the year by the streams. The whole filtration was 11.29 inches—10.39 in the Winter, and .90 in the Summer. The remainder, 1.29 inches, is supposed to be consumed by wells and excessive evaporation from marshes and pools, from which the discharge is obstructed, by animals, and in various other ways. These calculations were made from experiments running through eight years, in which the average fall of water was only 26.61 inches per annum. When the results derived from them are applied to our average fall of 35.28 inches, we have for the water that constitutes the Summer flow of our streams 13.25 cubic feet per minute per mile of the country drained, and for the average annual flow, exclusive of freshets, 26.50 cubic feet per mile per minute. That is to say, of the 35.28 inches of water that fall in the course of the year, 5.30 run away in the streams as the average annual flow, 7.95 run away in the freshets, and 20.47 evaporate from the earth's surface, leaving 1.56 for consumption in various ways. In the whole year the drainage is nearly equal to one cubic foot per second per square mile (.976), no allowance being made for the 1.56 inches which is lost as before stated. These calculations are based upon English experiments. Mr. McAlpine, late State engineer and surveyor, in making his calculations for supplying the city of Albany with water (page 22 of his Report to the Water Commissioners), takes 45 per cent of the fall as available for the use of the city. Mr. Henry Tracy, in his Report to the Canal Board of 1849 (page 17), gives the results of the investigations in the valleys of Madison Brook, in Madison County, and of Long Pond, near Boston, Mass., as follows:

Year.Name of valley.Fall of rain
and snow
in valley.
Water ran off
in inches.
Evaporation
from surface
of ground.
Ratio of
drainage.
1835Madison Brook 35.2615.8319.430.449
1837Long Pond 26.6511.7014.950.439
1838 Do38.1116.6221.490.436
Mean 0.441

"Madison Brook drains 6,000 acres, and Long Pond 11,400 acres. Mr. Tracy makes the following comment on this table: 'It appears that the evaporation from the surface of the ground in the valley of Long Pond was about 44 per cent more in 1838 than it was in 1837, while the ratio of the drainage differed less than one per cent the same years.'

"Dr. Hale states the evaporation from water-surface at Boston to be 56 inches in a year. (Senate Doc., No. 70, for 1853.)

"The following table contains the results arrived at by Mr. Coffin, at Ogdensburgh, and Mr. Conkey, at Syracuse, in regard to the evaporation from water-surface:

Months.Coffin, at Ogdensburgh, in 1838.Conkey, at Syracuse, in 1852.
Rain.Evaporation.Rain.Evaporation.
January 2.36 1.652 3.673 0.665
February 0.97 0.817 1.307 1.489
March 1.18 2.067 3.234 2.239
April 0.40 1.625 3.524 3.421
May 4.81 7.100 4.491 7.309
June 3.57 6.745 3.773 7.600
July 1.88 7.788 2.887 9.079
August 2.55 5.415 2.724 6.854
September 1.01 7.400 2.774 5.334
October 2.73 3.948 4.620 3.022
November 2.07 3.659 4.354 1.325
December 1.08 1.146 4.112 1.863
Total 24.6149.36241.47350.200

"The annual fall of water in England, is stated, by Mr. Dalton, to be 32 inches. In this State, it is 35.28 inches. The evaporation from water-surface in England, is put, by Mr. Dalton, at 44.43 inches. The fall is less, and the evaporation is less, in England than here; and the fall, in each case, bears the same proportion to the evaporation, very nearly; and it appears that the experiments made on the two sides of the ocean, result in giving very nearly the same per centage of drainage. In England, it is 42.4 per cent.; in this State, it is 44.1. In England, the experiments were made on a limited scale compared with ours; but the results agree so well, that great confidence may safely be placed in them."

In reviewing the whole subject of rain, and of evaporation and filtration, we seem to have evidence to justify the opinion, that with considerable more rain in this country than in England, and with a greater evaporation, because of a clearer sky and greater heat, we have a larger quantity of surplus water to be disposed of by drainage.

The occasion for thorough-drainage, however, is greater in the Northern part of the United States than in England, upon land of the same character; because, as we have already seen, rain falls far more regularly there than here, and never in such quantities in a single day; and because there the land is open to be worked by the plough nearly every day in the year, while here for several months our fields are locked up in frost, and our labor for the Spring crowded into a few days. There, the water which falls in Winter passes into the soil, and is drained off as it falls; while here, the snow accumulates to a great depth, and in thawing floods the land at once.