By far the most important of the living agencies concerned with the direct production of disease are those small vegetable organisms known as bacteria. Not all bacteria, by any means, produce disease; in fact, it is not too much to say that the majority of bacteria are benefactors to the human race. Their chief agency is not to cause disease, but to prevent it, and they do this because they are able to transform the waste products of animal life, which would normally be dangerous to health, into harmless mineral residue. They are really the scavengers of the earth's surface, not actually carrying off garbage, but rather transforming it, and, in the process, not merely destroying it, but changing it so as to make it available for plant-food. It is through the agency of bacteria that the air, which is being continually overloaded with carbonic acid from the lungs of animals, is reduced and taken up by plants so that an equilibrium is maintained. Otherwise, the atmosphere would be more and more vitiated with carbonic acid and organic vapors, and every one would die as if shut up in an air-tight room. But, because of bacteria, neither is the surface of the earth overloaded with waste organic matter nor do streams, however much polluted, continue to flow without some improvement being traced in their quality.

In some of the ordinary manufacturing processes, bacteria are all-important, as in making vinegar, wines, cheese; in fact, in any of the fermented food products. In agriculture, they are entirely responsible for supplying an adequate amount of food material to growing plants. Fresh manure is not suitable for plant-food and would be of no value on the fields or in the garden except as improved and modified by bacterial action. One of the greatest discoveries of their importance recently made has to do with the way in which peas and beans are able to absorb nitrogen from the air through the agency of bacteria. One knows that plowing under a crop of peas or clover enriches the soil, and that peas or clover make the best growth for this purpose. The reason is that these plants, through the activity of bacteria, are able to absorb nitrogen from the air and afterwards to convert it into food material.

But with all these good qualities a few bacteria, gone bad, perhaps, are associated with diseases, and by a series of experiments, chiefly those of a Frenchman named Pasteur and of a German named Koch, and of their followers, it has been ascertained that certain bacteria, and those only, will cause certain diseases. These diseases, that is, these caused by bacteria, are generally spoken of as epidemic or contagious, of which typhoid fever and cholera are examples.

All contagious diseases cannot at present be definitely associated with bacteria, probably for the reason that the methods employed to find the bacteria have not been adequate. For instance, the bacteria of smallpox has never been found, although the disease is so characteristically one of bacterial origin that no one can doubt the cause. Similarly, the bacteria responsible for measles, scarletina, and whooping cough have never been discovered, although the cause of each is also presumably bacterial. More definite information on the subject of the individual and responsible bacteria will be given in the subsequent chapters dealing with specific diseases. Inquiries into the method of growth and into the life history of specific bacteria serve our present purpose only as they teach methods for the prevention of the disease. For example; when it was found that the parasite of yellow fever, in the course of its life, spent fourteen days in the mosquito's body in such a condition that the mosquito during that time was harmless, it made possible exposure to mosquitoes laden with yellow fever for a period of thirteen days from the time of the preceding case.

Antitoxins.

But the methods of combating the different diseases when once contracted in the human body, based on the knowledge obtained of the life history of these germs, have been the most important result of their biological study. A large part of this knowledge has been acquired by the study of animals which have been found susceptible and so available for experimental investigation, and it may be that the impossibility of studying measles, for instance, in animals, may be one reason why the germ has never been discovered.

There is no evidence that animals suffer spontaneously from such diseases as typhoid fever, Asiatic cholera, leprosy, yellow fever, smallpox, measles, and so on; but it seems that in animals, as in man, the disease is the direct result of the life and growth in the animal of the characteristic disease-producing germ. The fact that diphtheria or tuberculosis can be experimentally given to rabbits or guinea pigs is without doubt the chief source of our knowledge of those diseases, although, in general, it is impossible to produce diseases in any animal which will be, clinically, precisely like the disease as it appears in man. The converse of this is also true, namely, that when it has been found impossible to experimentally inoculate an animal with a disease supposed to be bacterial in nature, then but very little of that disease is known.

The most important result of bacterial studies has been the production of what are known as antitoxins, and no more wonderful discovery has ever been made. To understand as best we may the principle involved, it is necessary to explain the process of bacterial attack. When bacteria capable of producing disease are introduced into the system, either through the mouth or into the lungs or into the blood through some skin abrasion, the bacteria, finding there a congenial habitat, thrive, grow, and multiply. In some cases, this bacterial growth results only in breaking down the cell tissues at the point or in the vicinity of the place where growth occurs; for instance, if a cut is made with a dirty knife, that is, one carrying bacteria on the blade, and is not immediately washed out with an antiseptic solution, bacteria will grow and pus will form in the cut. Similarly, a splinter, if not removed and cleansed, will produce a pus-forming wound. But unless a very extensive suppuration starts, the difficulty is all local. So it is with consumption, when the bacteria are localized in the lungs and by their growth destroy the lung tissue without, at least for many weeks, affecting the general health.

There are germs, however, like typhoid fever and diphtheria, which do not produce any particular local disturbance with the growth of bacteria, but the whole body becomes sick, the circulation of the blood is affected, and a general disturbance ensues. This is due to the action of a poison, called a toxin, which is set free as a result of the growth of the bacteria in some one part of the body, which poison is then carried by the blood throughout the entire system, inducing fever and a general debility.

Just how these toxins are formed is not certain. They are not the bacteria themselves. This we know because the disease-producing bacteria can be grown in broth and the mixture can be strained through fine porcelain, fine enough to strain out the bacteria. Yet it has been found that the clear liquid passing the porcelain filter is capable of producing disease and is a deadly poison without the presence of any bacteria at all. During the incubation period of a disease, as, for example, in the three-week period when typhoid fever is developing, these poisons are being formed and are being scattered through the body, and it is during this time that the fight takes place between these poisonous forces and the defending forces always present in the human system. As already pointed out, these defensive forces are powerful or not, according as the general health of the individual is good or bad, and we see the familiar sight of persons said to be run down taking a disease, while those not so depleted of vitality are able to resist or remain immune.