Only the hardest rocks are entirely solid, the others containing a certain percentage of voids or interstices. These voids are filled with air or water, as the case may be, and we may stop for a moment to inquire the effect of the presence of this air and water. In loose sands the amount of voids is 40 to 50 per cent of the total volume, in sandstone about 20 per cent, and in other rock reduced amounts. The volume of air, therefore, in the soil under a cellar to a depth of four or five feet, amounts to a good many cubic feet and would not be worth inquiring into except for the fact that it is continually in a state of motion. When the ground water, perhaps normally five feet below the cellar bottom, rises in the spring, this ground air is forced out, and in a cellar without a concrete foundation it rises into the cellar and penetrates into the house.

A house artificially warmed by stoves is continually discharging heated air from the tops of the rooms and colder air is being brought in from below to take its place. This air comes from the ground below, and in open soil may come from a great depth. A case has been noted where gas escaping from a main in a city street twenty feet from a cellar wall was, by the suction due to heat, drawn into the cellar and thence into the rooms of the house. It is possible that air from cesspools and broken drains in the vicinity of a house may, in this same way, contribute to the atmosphere breathed within the walls of the house. Gravelly and sandy soils, therefore, in order to maintain the superiority which they furnish for building construction, should not be polluted, since any pollution in the vicinity influences the quality of air which may get into the house. The method of preventing such ingress is plainly to water-proof the outside walls of the cellar and provide an air-tight floor over the cellar bottom. Methods of doing this will be discussed in the next chapter.

Moisture in soils.

The presence of water in the soil has usually been considered to be unhealthy because of the impression that it led to certain fevers. The writer has heard, for instance, of an attack of malaria being caused by a short visit to a damp vegetable cellar; and it is one of the triumphs of the century that the malarial parasite has been discovered, and the old theory of the dangers of moisture been done away with. A damp cellar has always been considered to be undesirable, but just why nobody knows. A damp cellar causes molds to form rapidly, thus destroying vegetables and other material which might naturally be stored there, but that the presence of moisture in a cellar in itself produces any organic emanation leading to disease is not true, although dampness is essential to the growth of certain organisms.

In the latter part of the nineteenth century, Dr. Bowditch, of Boston, showed that consumption developed most where the surrounding soil was moist, and generally it is the impression that dry air is the only proper air for a consumptive person to breathe. This theory, however, is being rapidly exploded, and patients now remain outdoors in any weather, and no kind of air is objected to by physicians, provided it is outdoor air. Some little time ago the writer was called by a Board of Health to investigate a certain swamp which had some odor, was considered a blot on the landscape in an unusually picturesque village, and was said to be responsible for a long list of contagious diseases. A house-to-house inquiry in the vicinity showed that among some dozen families, only one illness in the last few years could be remembered, and that was an old lady who had been on the verge of the grave for forty years.

It is curious to note the many examples which are cited by the earlier sanitarians to prove the dangerous effect of damp soil. For example, Pettenkofer, a very prominent German hygienist, says that in two royal stables near Munich, with the same arrangements as to stalls, feed, and attendance, and the same class of horses, fever affected the horses very unequally. In one stable, fever was continually prevalent; in the other, no fever was found. Horses sent from the unhealthful to the healthful stables did not communicate the disease. The difference between the two places, says Pettenkofer, was that in the healthful stables the ground water was five to six feet below the surface, while in the unhealthful ones it was only two and a half feet from the surface. A system of drainage by which the ground water was brought to the same level under both stables made them equally healthful. The writer cannot help but feel that some other factor was involved, and while he has no doubt that excessive dampness in stables or cellars is undesirable, he does not believe that such dampness can be directly the cause of fevers of any sort.

It is not desirable, however, to live over a wet cellar nor to maintain a house in a constant condition of dampness, partly on account of its bad effect on the house and partly because such dampness may, by reducing the vitality of the household, become a predisposing factor in disease.

Drainage.

From whatever source dampness may come, it can be guarded against by giving to the surface of the ground in the vicinity of the house, on all sides, sufficient slope away from the walls so that there will be no tendency for water to accumulate against the cellar walls. On the top of a hill this is very easy to do, and the natural surface grade takes care of the surface water without difficulty. On a sidehill or in a valley artificial grading has to be resorted to, except on one side.