The local population of racers studied was near the center of the species' geographic range, and is to some extent representative of the species as a whole, though differing in its ecology from other populations in proportion to their remoteness and the distinctness of their habitats. It has not been demonstrated that ecological traits of populations change in a discontinuous manner or correspond in their limits with those of named subspecies. More likely geographical variation is continuous and parallels morphological variation only in a general way. Certainly the boundaries of subspecies' ranges should not be accorded undue emphasis in an ecological study.

My investigation of the blue racer under natural conditions, combined with a compilation and analysis of published literature, has resulted in a fairly satisfactory understanding of some phases of the species' ecology and natural history, such as the food habits, the growth rate, the extent of home range and of seasonal movements. However, relatively little was learned concerning some phases of the life history. Unfortunately, the traps used did not catch young of the smaller sizes. Facts concerning egg-laying, incubation, and hatching therefore are known chiefly from snakes kept in confinement. Although first-year young were captured by hand from time to time they were obtained in relatively small numbers, and little was learned regarding their population density, movements, or mortality factors. Of course, such hiatuses are to be expected; even in man such enigmas as the disparate sex ratio still challenge the investigator.

For the subspecies of racer involved in my field study the widely used vernacular "blue racer" has been adopted in this report. In general I advocate conformity with the vernacular names published by the Committee on Herpetological Common Names (1956). However, in this list, the name blue racer was assigned to Coluber constrictor foxi, an invalid subspecies of the Prairie Peninsula that has been relegated (Auffenberg, 1955:92; Smith, 1961:196) to the synonymy of C. c. flaviventris. It therefore seems appropriate that the book name "yellow-bellied racer" applied to flaviventris by the Committee should be abandoned for this subspecies, and that the name blue racer be applied officially, as it is in actual practice by both laymen and herpetologists, to all populations of this subspecies.

Acknowledgments

Financial assistance from the National Science Foundation in 1957 through 1962 is acknowledged. Although none of the three separate grants involved was made specifically for the autecological study of the racer, all three contributed to the support of the extensive program of live-trapping for snakes, which yielded most of the records upon which this report is based. Student assistants who were employed on these projects include James W. Bee, William N. Berg, Donna M. Hardy, Robert M. Hedrick, Dale Hoyt, Robert M. Packard, Robert G. Webb, and Wayne Wiens, at the Reservation; Roy Henry, Dale Horst, Dwight R. Platt, and Howard L. Schrag at Harvey County Park, and Gilbert L. Adrian at Cedar Bluff Reservoir. Dr. Edwin P. Martin, formerly of Fort Hays, Kansas State College, was helpful in planning and carrying out the field work at Cedar Bluff Reservoir. Eric Shulenberger assisted with field work and processing of data in 1962 under the National Science Foundation program for Undergraduate Research Participation. Robert Miner assisted with the examination of specimens in 1960. Mr. August Lalouette of Florence, Kansas, permitted field work on his ranch and contributed information and materials to expedite this work. Mr. and Mrs. Harold Brune of Route 3, Lawrence, Kansas, kindly contributed several clutches of racer eggs found on their farm in Jefferson County, and also made available significant information accompanying them. Dr. William H. Stickel kindly made available at my request records of predation on racers from the food habits files of the U. S. Fish and Wildlife Service. Dr. William E. Duellman of the University of Kansas Museum of Natural History and Dr. Robert C. Stebbins of the University of California Museum of Vertebrate Zoology kindly permitted examination and dissection of specimens in the collections under their care. Dr. George W. Byers of the University of Kansas Department of Entomology identified numerous insects eaten by racers. My daughter, Alice V. Fitch, often assisted me with the field work and the processing of data. My wife, Virginia R. Fitch, read the manuscript critically, assisted me with the examination of museum specimens, and with typing, and helped in various other ways.

Methods and Materials

Table 1. Numbers and Distribution of Captures and Recaptures of Blue Racers on the Reservation and Rockefeller Tract

Span of years within which each individual was capturedNumber of separate years within which each individual was capturedNumber of times each individual was captured
YearsIndividualsYearsIndividualsTimes capturedIndividuals
174917491679
213721972181
356351393
432415431
5195657
61361614
777078
828184
9391
100100
111110
121121
130
140
150
161

This investigation was based primarily on the capture in live-traps, marking, release, and recapture of blue racers in their natural habitat. On the combined area of the Reservation and the Rockefeller Experimental Tract, 1020 blue racers were recorded a total of 1688 times from August 30, 1948, to October 27, 1962. At Harvey County Park 361 blue racers were marked, and were captured a total of 467 times from May 6, 1959, to September 14, 1962, and at Cedar Bluff Reservoir 42 were captured from May 11, 1959, to June 30, 1960.

The traps used were cylinders of galvanized wire, "hardware cloth" (Fitch, 1951:77; 1960:77), having funnels opening into each end, or having a funnel at one end and a plug at the other. The traps, open at both ends, were used along hilltop rock ledges where an exposed vertical rock face provided a barrier along which a snake might travel and where it could be easily intercepted by the trap without any accessory equipment (see [Pl. 21, Fig. 1]). Where such natural barriers were lacking, as in level fields, barriers consisting of boards, screens or sheet metal were installed to guide the racer toward the trap and into a funnel entrance. Two such barriers at each end of a trap forming a V to guide the snake into the funnel were used in 1956 and 1957, when trapping at places away from the hibernation ledges was undertaken. Later it was found simpler and more effective to use a single barrier with a trap at each end. The barrier extended up into the funnel entrance, and usually the racer, following along the barrier on either side, would pass into the funnel and through its apex. However, it was possible for a racer to travel around the end of the barrier without entering the trap, and perhaps some did so.