Before we take up the details of the assault made by Young upon the old doctrine of the materiality of light, we must pause to consider the personality of Young himself. For it chanced that this Quaker physician was one of those prodigies who come but few times in a century, and the full list of whom in the records of history could be told on one's thumbs and fingers. His biographers tell us things about him that read like the most patent fairy-tales. As a mere infant in arms he had been able to read fluently. Before his fourth birthday came he had read the Bible twice through, as well as Watts's Hymns—poor child!—and when seven or eight he had shown a propensity to absorb languages much as other children absorb nursery tattle and Mother Goose rhymes. When he was fourteen, a young lady visiting the household of his tutor patronized the pretty boy by asking to see a specimen of his penmanship. The pretty boy complied readily enough, and mildly rebuked his interrogator by rapidly writing some sentences for her in fourteen languages, including such as, Arabian, Persian, and Ethiopic.
Meantime languages had been but an incident in the education of the lad. He seems to have entered every available field of thought—mathematics, physics, botany, literature, music, painting, languages, philosophy, archaeology, and so on to tiresome lengths—and once he had entered any field he seldom turned aside until he had reached the confines of the subject as then known and added something new from the recesses of his own genius. He was as versatile as Priestley, as profound as Newton himself. He had the range of a mere dilettante, but everywhere the full grasp of the master. He took early for his motto the saying that what one man has done, another man may do. Granting that the other man has the brain of a Thomas Young, it is a true motto.
Such, then, was the young Quaker who came to London to follow out the humdrum life of a practitioner of medicine in the year 1801. But incidentally the young physician was prevailed upon to occupy the interims of early practice by fulfilling the duties of the chair of Natural Philosophy at the Royal Institution, which Count Rumford had founded, and of which Davy was then Professor of Chemistry—the institution whose glories have been perpetuated by such names as Faraday and Tyndall, and which the Briton of to-day speaks of as the "Pantheon of Science." Here it was that Thomas Young made those studies which have insured him a niche in the temple of fame not far removed from that of Isaac Newton.
As early as 1793, when he was only twenty, Young had begun to Communicate papers to the Royal Society of London, which were adjudged worthy to be printed in full in the Philosophical Transactions; so it is not strange that he should have been asked to deliver the Bakerian lecture before that learned body the very first year after he came to London. The lecture was delivered November 12, 1801. Its subject was "The Theory of Light and Colors," and its reading marks an epoch in physical science; for here was brought forward for the first time convincing proof of that undulatory theory of light with which every student of modern physics is familiar—the theory which holds that light is not a corporeal entity, but a mere pulsation in the substance of an all-pervading ether, just as sound is a pulsation in the air, or in liquids or solids.
Young had, indeed, advocated this theory at an earlier date, but it was not until 1801 that he hit upon the idea which enabled him to bring it to anything approaching a demonstration. It was while pondering over the familiar but puzzling phenomena of colored rings into which white light is broken when reflected from thin films—Newton's rings, so called—that an explanation occurred to him which at once put the entire undulatory theory on a new footing. With that sagacity of insight which we call genius, he saw of a sudden that the phenomena could be explained by supposing that when rays of light fall on a thin glass, part of the rays being reflected from the upper surface, other rays, reflected from the lower surface, might be so retarded in their course through the glass that the two sets would interfere with one another, the forward pulsation of one ray corresponding to the backward pulsation of another, thus quite neutralizing the effect. Some of the component pulsations of the light being thus effaced by mutual interference, the remaining rays would no longer give the optical effect of white light; hence the puzzling colors.
Here is Young's exposition of the subject:
Of the Colors of Thin Plates
"When a beam of light falls upon two refracting surfaces, the partial reflections coincide perfectly in direction; and in this case the interval of retardation taken between the surfaces is to their radius as twice the cosine of the angle of refraction to the radius.
"Let the medium between the surfaces be rarer than the surrounding mediums; then the impulse reflected at the second surface, meeting a subsequent undulation at the first, will render the particles of the rarer medium capable of wholly stopping the motion of the denser and destroying the reflection, while they themselves will be more strongly propelled than if they had been at rest, and the transmitted light will be increased. So that the colors by reflection will be destroyed, and those by transmission rendered more vivid, when the double thickness or intervals of retardation are any multiples of the whole breadth of the undulations; and at intermediate thicknesses the effects will be reversed according to the Newtonian observation.
"If the same proportions be found to hold good with respect to thin plates of a denser medium, which is, indeed, not improbable, it will be necessary to adopt the connected demonstrations of Prop. IV., but, at any rate, if a thin plate be interposed between a rarer and a denser medium, the colors by reflection and transmission may be expected to change places."