It was in 1861 that young Dr. Haeckel came first to Jena as a teacher. He had made a tentative effort at the practice of medicine in Berlin, then very gladly had turned from a distasteful pursuit to the field of pure science. His first love, before he took up the study of medicine, had been botany, though pictorial art, then as later, competed with science for his favorable attention. But the influence of his great teacher, Johannes Müller, together with his medical studies, had turned his attention more directly to the animal rather than vegetable life, and when he left medicine it was to turn explicitly to zoology as a life study. Here he believed he should find a wider field than in art, which he loved almost as well, and which, it may be added, he has followed all his life as a dilettante of much more than amateurish skill. Had he so elected, Haeckel might have made his mark in art quite as definitely as he has made it in science. Indeed, even as the case stands, his draughtsman's skill has been more than a mere recreation to him, for without his beautiful drawings, often made and reproduced in color, his classical monographs on various orders of living creatures would have lacked much of their present value.

Moreover, quite aside from these merely technical drawings, Professor Haeckel has made hundreds of paintings purely for recreation and the love of it, illustrating—and that too often with true artistic feeling for both form and color—the various lands to which his zoological quests have carried him, such as Sicily, the Canaries, Egypt, and India. From India alone, after a four-months' visit, Professor Haeckel brought back two hundred fair-sized water-colors, a feat which speaks at once for his love of art and his amazing industry.

I dwell upon this phase of Professor Haeckel's character and temperament from the very outset because I wish it constantly to be borne in mind, in connection with some of the doctrines to be mentioned presently, that here we have to do with no dry-as-dust scientist, cold and soulless, but with a broad, versatile, imaginative mind, one that links the scientific and the artistic temperaments in rarest measure. Charles Darwin, with whose name the name of Haeckel will always be linked, told with regret that in his later years he had become so steeped in scientific facts that he had lost all love for or appreciation of art or music. There has been no such mental warping and atrophy in the mind of Ernst Haeckel. Yet there is probably no man living to-day whose mind contains a larger store of technical scientific facts than his, nor a man who has enriched zoology with a larger number of new data, the result of direct personal observation in field or laboratory.

How large Haeckel's contribution in this last regard has been can be but vaguely appreciated by running over the long list of his important publications, though the list includes more than one hundred titles, unless it is understood that some single titles stand for monographs of gigantic proportions, which have involved years of labor in the production. Thus the text alone of the monograph on the radiolarians, a form of microscopic sea-animalcule (to say nothing of the volume of plates), is a work of three gigantic volumes, weighing, as Professor Haeckel laughingly remarks, some thirty pounds, and representing twelve years of hard labor. This particular monograph, by-the-bye, is written in English (of which, as of several other languages, Professor Haeckel is perfect master), and has a history of more than ordinary interest. It appears that the radiolarians were discovered about a half-century ago by Johannes Müller, who made an especial-study of them, which was uncompleted at the time of his death in 1858. His monograph, describing the fifty species then known, was published posthumously. Haeckel, on whom the mantle of the great teacher was to fall, and who had been Müller's last pupil, took up the work his revered master had left unfinished as his own first great original Arbeit. He went to Messina and was delighted to find the sea there replete with radiolarians, of which he was able to discover one or two new species almost every day, until he had added one hundred and fifty all told to Müller's list, or more than triple the whole number previously known. The description of these one hundred and fifty new radiolarians constituted Haeckel's first great contribution to zoology, and won him his place as teacher at Jena in 1861.

Henceforth Haeckel was, of course, known as the greatest authority on this particular order of creatures. For this reason it was that Professor Murray, the naturalist of the famous expedition which the British government sent around the world in the ship Challenger, asked Haeckel to work up the radiolarian material that had been gathered during that voyage. Murray showed Haeckel a little bottle containing water, with a deposit of seeming clay or mud in the bottom. "That mud," he said, "was dredged up from the bottom of the ocean, and every particle of it is the shell of a radiolarian." "Impossible," said Haeckel. "Yet true," replied Murray, "as the microscope will soon prove to you."

So it did, and Professor Haeckel spent twelve years examining that mud under the microscope, with the result that, before he had done, he had discovered no fewer than four thousand new species of radiolarians, all of which, of course, had to be figured, described, and christened. Think of baptizing four thousand creatures, finding a new, distinct, and appropriate Latin name for each and every one, and that, too, when the creatures themselves are of microscopic size, and the difference between them often so slight that only the expert eye could detect it. Think, too, of the deadly tedium of labor in detecting these differences, in sketching them, and in writing out, to the length of three monster volumes, technical dissertations upon them.

To the untechnical reader that must seem a deadly, a veritably mind-sapping task. And such, indeed, it would prove to the average zoologist. But with the mind of a Haeckel it is far otherwise. To him a radiolarian, or any other creature, is of interest, not so much on its own account as for its associations. He sees it not as an individual but as a link in the scale of organic things, as the bearer of a certain message of world-history. Thus the radiolarians, insignificant creatures though they seem, have really taken an extraordinary share in building up the crust of the earth. The ooze at the bottom of the sea, which finally becomes metamorphosed into chalk or stone, is but the aggregation of the shells of dead radiolarians. In the light of such a rôle the animalcule takes on a new interest.

But even greater is the interest that attaches to every creature in regard to the question of its place in the organic scale of evolution. What are the homologies of this form and that? What its probable ancestry? What gaps does it bridge? What can it tell us of the story of animal creation? These and such like are the questions that have been ceaselessly before Haeckel's mind in all his studies of zoology. Hence the rich fountain of philosophical knowledge that has welled up from what otherwise might have been the most barren of laboratory borings. Thus from a careful investigation of the sponge Haeckel was led to his famous gastrula theory, according to which the pouchlike sponge-animalcule—virtually a stomach without members—is the type of organism on which all high organisms are built, so to speak—that is, out of which all have evolved.

This gastrula theory, now generally accepted, is one of Haeckel's two great fundamental contributions to the evolution philosophy with the history of which his life work is so intimately linked. The other contribution is the theory, even more famous and now equally undisputed, that every individual organism, in its em-bryological development, rehearses in slurred but unmistakable epitome the steps of evolution by which the ancestors of that individual came into racial being. That is to say, every mammal, for example, originating in an egg stage, when it is comparable to a protozoon, passes through successive stages when it is virtually in succession a gastrula, a fish, and an amphibian before it attains the mammalian status, because its direct ancestors were in succession, through the long geological ages, protozoons, gastrulae, fishes, amphibians before the true mammal was evolved. This theory cast a flood of light into many dark places of the Darwinian philosophy. It was propounded in 1866 in Professor Haeckel's great work on morphology, and it has ever since been a guiding principle in his important philosophical studies.

It was through this same work on morphology that Haeckel first came to be universally recognized as the great continental champion of Darwinism—the Huxley of Germany. Like Huxley, Haeckel had at once made the logical application of the Darwinian theory to man himself, and he sought now to trace the exact lineage of the human family as no one had hitherto attempted to fathom it. Utilizing his wide range of zoological and anatomical knowledge, he constructed a hypothetical tree of descent—or, if you prefer, ascent—from the root in a protozoon to the topmost twig or most recent offshoot, man. From that day till this Haeckel's persistent labors have been directed towards the perfection of that genealogical tree.