IN recent chapters we have witnessed a marvellous development in many branches of pure science. In viewing so wonderfully diversified a field, it has of course been impossible to dwell upon details, or even to glance at every minor discovery. At best one could but summarize the broad sweep of progress somewhat as a battle might be described by a distant eye-witness, telling of the general direction of action, of the movements of large masses, the names of leaders of brigades and divisions, but necessarily ignoring the lesser fluctuations of advance or recession and the individual gallantry of the rank and file. In particular, interest has centred upon the storming of the various special strongholds of ignorant or prejudiced opposition, which at last have been triumphantly occupied by the band of progress. In each case where such a stronghold has fallen, the victory has been achieved solely through the destructive agency of newly discovered or newly marshalled facts—the only weapons which the warrior of science seeks or cares for. Facts must be marshalled, of course, about the guidon of a hypothesis, but that guidon can lead on to victory only when the facts themselves support it. Once planted victoriously on the conquered ramparts the hypothesis becomes a theory—a generalization of science—marking a fresh coign of vantage, which can never be successfully assailed unless by a new host of antagonistic facts. Such generalizations, with the events leading directly up to them, have chiefly occupied our attention.
But a moment's reflection makes it clear that the battle of science, thus considered, is ever shifting ground and never ended. Thus at any given period there are many unsettled skirmishes under way; many hypotheses are yet only struggling towards the stronghold of theory, perhaps never to attain it; in many directions the hosts of antagonistic facts seem so evenly matched that the hazard of war appears uncertain; or, again, so few facts are available that as yet no attack worthy the name is possible. Such unsettled controversies as these have, for the most part, been ignored in our survey of the field. But it would not be fair to conclude our story without adverting to them, at least in brief; for some of them have to do with the most comprehensive and important questions with which science deals, and the aggregate number of facts involved in these unfinished battles is often great, even though as yet the marshalling has not led to final victory for any faction. In some cases, doubtless, the right hypothesis is actually in the field, but its supremacy not yet conclusively proved—perhaps not to be proved for many years or decades to come. Some of the chief scientific results of the nineteenth century have been but the gaining of supremacy for hypotheses that were mere forlorn hopes, looked on with general contempt, if at all heeded, when the eighteenth century came to a close—witness the doctrines of the great age of the earth, of the immateriality of heat, of the undulatory character of light, of chemical atomicity, of organic evolution. Contrariwise, the opposite ideas to all of these had seemingly a safe supremacy until the new facts drove them from the field. Who shall say, then, what forlorn hope of to-day's science may not be the conquering host of to-morrow? All that one dare attempt is to cite the pretensions of a few hypotheses that are struggling over the still contested ground.
SOLAR AND TELLURIC PROBLEMS
Our sun being only a minor atom of the stellar pebble, solar problems in general are of course stellar problems also. But there are certain special questions regarding which we are able to interrogate the sun because of his proximity, and which have, furthermore, a peculiar interest for the residents of our little globe because of our dependence upon this particular star. One of the most far-reaching of these is as to where the sun gets the heat that he gives off in such liberal quantities. We have already seen that Dr. Mayer, of conservation-of-energy fame, was the first to ask this question. As soon as the doctrine of the persistence and convertibility of energy was grasped, about the middle of the century, it became clear that this was one of the most puzzling of questions. It did not at all suffice to answer that the sun is a ball of fire, for computation showed that, at the present rate of heat-giving, if the sun were a solid mass of coal, he would be totally consumed in about five thousand years. As no such decrease in size as this implies had taken place within historic times, it was clear that some other explanation must be sought.
Dr. Mayer himself hit upon what seemed a tenable solution at the very outset. Starting from the observed fact that myriads of tiny meteorites are hurled into the earth's atmosphere daily, he argued that the sun must receive these visitants in really enormous quantities—sufficient, probably, to maintain his temperature at the observed limits. There was nothing at all unreasonable about this assumption, for the amount of energy in a swiftly moving body capable of being transformed into heat if the body be arrested is relatively enormous. Thus it is calculated that a pound of coal dropped into the sun from the mathematician's favorite starting-point, infinity, would produce some six thousand times the heat it could engender if merely burned at the sun's surface. In other words, if a little over two pounds of material from infinity were to fall into each square yard of the sun's surface each hour, his observed heat would be accounted for; whereas almost seven tons per square yard of stationary fuel would be required each hour to produce the same effect.
In view of the pelting which our little earth receives, it seemed not an excessive requisition upon the meteoric supply to suppose that the requisite amount of matter may fall into the sun, and for a time this explanation of his incandescence was pretty generally accepted. But soon astronomers began to make calculations as to the amount of matter which this assumption added to our solar system, particularly as it aggregated near the sun in the converging radii, and then it was clear that no such mass of matter could be there without interfering demonstrably with the observed course of the interior planets. So another source of the sun's energy had to be sought. It was found forthwith by that other great German, Helmholtz, who pointed out that the falling matter through which heat may be generated might just as well be within the substance of the sun as without—in other words, that contraction of the sun's heated body is quite sufficient to account for a long-sustained heat-supply which the mere burning of any known substance could not approach. Moreover the amount of matter thus falling towards the sun's centre being enormous—namely, the total substance of the sun—a relatively small amount of contraction would be theoretically sufficient to keep the sun's furnace at par, so to speak.
At first sight this explanation seemed a little puzzling to many laymen and some experts, for it seemed to imply, as Lord Kelvin pointed out, that the sun contracts because it is getting cooler, and gains heat because it contracts. But this feat is not really as paradoxical as it seems, for it is not implied that there is any real gain of heat in the sun's mass as a whole, but quite the reverse. All that is sought is an explanation of a maintenance of heat-giving capacity relatively unchanged for a long, but not an interminable, period. Indeed, exactly here comes in the novel and startling feature of. Helmholtz's calculation. According to Mayer's meteoric hypothesis, there were no data at hand for any estimate whatever as to the sun's permanency, since no one could surmise what might be the limits of the meteoric supply. But Helmholtz's estimate implied an incandescent body cooling—keeping up a somewhat equable temperature through contraction for a time, but for a limited time only; destined ultimately to become liquid, solid; to cool below the temperature of incandescence—to die. Not only so, but it became possible to calculate the limits of time within which this culmination would probably occur. It was only necessary to calculate the total amount of heat which could be generated by the total mass of our solar system in falling together to the sun's centre from "infinity" to find the total heat-supply to be drawn upon. Assuming, then, that the present observed rate of heat-giving has been the average maintained in the past, a simple division gives the number of years for which the original supply is adequate. The supply will be exhausted, it will be observed, when the mass comes into stable equilibrium as a solid body, no longer subject to contraction, about the sun's centre—such a body, in short, as our earth is at present.
This calculation was made by Lord Kelvin, Professor Tait, and others, and the result was one of the most truly dynamitic surprises of the century. For it transpired that, according to mathematics, the entire limit of the sun's heat-giving life could not exceed something like twenty-five millions of years. The publication of that estimate, with the appearance of authority, brought a veritable storm about the heads of the physicists. The entire geological and biological worlds were up in arms in a trice. Two or three generations before, they hurled brickbats at any one who even hinted that the solar system might be more than six thousand years old; now they jeered in derision at the attempt to limit the life-bearing period of our globe to a paltry fifteen or twenty millions.
The controversy as to solar time thus raised proved one of the most curious and interesting scientific disputations of the century. The scene soon shifted from the sun to the earth; for a little reflection made it clear that the data regarding the sun alone were not sufficiently definite. Thus Dr. Croll contended that if the parent bodies of the sun had chanced to be "flying stars" before collision, a vastly greater supply of heat would have been engendered than if the matter merely fell together. Again, it could not be overlooked that a host of meteors are falling into the sun, and that this source of energy, though not in itself sufficient to account for all the heat in question, might be sufficient to vitiate utterly any exact calculations. Yet again, Professor Lockyer called attention to another source of variation, in the fact that the chemical combination of elements hitherto existing separately must produce large quantities of heat, it being even suggested that this source alone might possibly account for all the present output. On the whole, then, it became clear that the contraction theory of the sun's heat must itself await the demonstration of observed shrinkage of the solar disk, as viewed by future generations of observers, before taking rank as an incontestable theory, and that computations as to time based solely on this hypothesis must in the mean time be viewed askance.
But the time controversy having taken root, new methods were naturally found for testing it. The geologists sought to estimate the period of time that must have been required for the deposit of the sedimentary rocks now observed to make up the outer crust of the earth. The amount of sediment carried through the mouth of a great river furnishes a clew to the rate of denudation of the area drained by that river. Thus the studies of Messrs. Humphreys and Abbot, made for a different purpose, show that the average level of the territory drained by the Mississippi is being reduced by about one foot in six thousand years. The sediment is, of course, being piled up out in the Gulf at a proportionate rate. If, then, this be assumed to be an average rate of denudation and deposit in the past, and if the total thickness of sedimentary deposits of past ages were known, a simple calculation would show the age of the earth's crust since the first continents were formed. But unfortunately these "ifs" stand mountain-high here, all the essential factors being indeterminate. Nevertheless, the geologists contended that they could easily make out a case proving that the constructive and destructive work still in evidence, to say nothing of anterior revolutions, could not have been accomplished in less than from twenty-five to fifty millions of years.