That certainly must be considered an unduly modest pronouncement regarding the only workable hypothesis of the constitution of matter that has ever been imagined; yet the fact certainly holds that the vortex theory, the great contribution of the nineteenth century towards the solution of a world-old problem, has not been carried beyond the stage of hypothesis, and must be passed on, with its burden of interesting corollaries, to another generation for the experimental evidence that will lead to its acceptance or its refutation. Our century has given experimental proof of the existence of the atom, but has not been able to fathom in the same way the exact form or nature of this ultimate particle of matter.
Equally in the dark are we as to the explanation of that strange affinity for its neighbors which every atom manifests in some degree. If we assume that the power which holds one atom to another is the same which in the case of larger bodies we term gravitation, that answer carries us but a little way, since, as we have seen, gravitation itself is the greatest of mysteries. But again, how chances it that different atoms attract one another in such varying degrees, so that, for example, fluorine unites with everything it touches, argon with nothing? And how is it that different kinds of atoms can hold to themselves such varying numbers of fellow-atoms—oxygen one, hydrogen two, and so on? These are questions for the future. The wisest chemist does not know why the simplest chemical experiment results as it does. Take, for example, a water-like solution of nitrate of silver, and let fall into it a few drops of another water-like solution of hydrochloric acid; a white insoluble precipitate of chloride of silver is formed. Any tyro in chemistry could have predicted the result with absolute certainty. But the prediction would have been based purely upon previous empirical knowledge—solely upon the fact that the thing had been done before over and over, always with the same result. Why the silver forsook the nitrogen atom and grappled the atom of oxygen no one knows. Nor can any one as yet explain just why it is that the new compound is an insoluble, colored, opaque substance, whereas the antecedent ones were soluble, colorless, and transparent. More than that, no one can explain with certainty just what is meant by the familiar word soluble itself. That is to say, no one knows just what happens when one drops a lump of salt or sugar into a bowl of water. We may believe with Professor Ostwald and his followers that the molecules of sugar merely glide everywhere between the molecules of water, without chemical action; or, on the other hand, dismissing this mechanical explanation, we may say with Mendeleef that the process of solution is the most active of chemical phenomena, involving that incessant interplay of atoms known as dissociation. But these two explanations are mutually exclusive, and nobody can say positively which one, if either, is right. Nor is either theory at best more than a half explanation, for the why of the strange mechanical or chemical activities postulated is quite ignored. How is it, for example, that the molecules of water are able to loosen the intermolecular bonds of the sugar particles, enabling them to scamper apart?
But, for that matter, what is the nature of these intermolecular bonds in any case? And why, at the same temperature, are some substances held together with such enormous rigidity, others so loosely? Why does not a lump of iron dissolve as readily as the lump of sugar in our bowl of water? Guesses may be made to-day at these riddles, to be sure, but anything like tenable solutions will only be possible when we know much more than at present of the nature of intermolecular forces and of the mechanism of molecular structures. As to this last, studies are under way that are full of promise. For the past ten or fifteen years Professor Van 't Hoof of Amsterdam (now of Berlin), with a company of followers, has made the space relations of atoms a special study, with the result that so-called stereo-chemistry has attained a firm position. A truly amazing insight has been gained into the space relations of the molecules of carbon compounds in particular, and other compounds are under investigation. But these results, wonderful though they seem when the intricacy of the subject is considered, are, after all, only tentative. It is demonstrated that some molecules have their atoms arranged in perfectly definite and unalterable schemes, but just how these systems are to be mechanically pictured—whether as miniature planetary systems or what not—remains for the investigators of the future to determine.
It appears, then, that whichever way one turns in the realm of the atom and molecule, one finds it a land of mysteries. In no field of science have more startling discoveries been made in the past century than here; yet nowhere else do there seem to lie wider realms yet unfathomed.
LIFE PROBLEMS
In the life history of at least one of the myriad star systems there has come a time when, on the surface of one of the minor members of the group, atoms of matter have been aggregated into such associations as to constitute what is called living matter. A question that at once suggests itself to any one who conceives even vaguely the relative uniformity of conditions in the different star groups is as to whether other worlds than ours have also their complement of living forms. The question has interested speculative science more perhaps in our generation than ever before, but it can hardly be said that much progress has been made towards a definite answer. At first blush the demonstration that all the worlds known to us are composed of the same matter, subject to the same general laws, and probably passing through kindred stages of evolution and decay, would seem to carry with it the reasonable presumption that to all primary planets, such as ours, a similar life-bearing stage must come. But a moment's reflection shows that scientific probabilities do not carry one safely so far as this. Living matter, as we know it, notwithstanding its capacity for variation, is conditioned within very narrow limits as to physical surroundings. Now it is easily to be conceived that these peculiar conditions have never been duplicated on any other of all the myriad worlds. If not, then those more complex aggregations of atoms which we must suppose to have been built up in some degree on all cooling globes must be of a character so different from what we term living matter that we should not recognize them as such. Some of them may be infinitely more complex, more diversified in their capacities, more widely responsive to the influences about them, than any living thing on earth, and yet not respond at all to the conditions which we apply as tests of the existence of life.
This is but another way of saying that the peculiar limitations of specialized aggregations of matter which characterize what we term living matter may be mere incidental details of the evolution of our particular star group, our particular planet even—having some such relative magnitude in the cosmic order, as, for example, the exact detail of outline of some particular leaf of a tree bears to the entire subject of vegetable life. But, on the other hand, it is also conceivable that the conditions on all planets comparable in position to ours, though never absolutely identical, yet pass at some stage through so similar an epoch that on each and every one of them there is developed something measurably comparable, in human terms, to what we here know as living matter; differing widely, perhaps, from any particular form of living being here, yet still conforming broadly to a definition of living things. In that case the life-bearing stage of a planet must be considered as having far more general significance; perhaps even as constituting the time of fruitage of the cosmic organism, though nothing but human egotism gives warrant to this particular presumption.
Between these two opposing views every one is free to choose according to his preconceptions, for as yet science is unable to give a deciding vote. Equally open to discussion is that other question, as to whether the evolution of universal atoms into a "vital" association mass from which all the diversified forms evolved, or whether such shifting from the so-called non-vital to the vital was many times repeated—perhaps still goes on incessantly. It is quite true that the testimony of our century, so far as it goes, is all against the idea of "spontaneous generation" under existing conditions. It has been clearly enough demonstrated that the bacteria and other low forms of familiar life which formerly were supposed to originate "spontaneously" had a quite different origin. But the solution of this special case leaves the general problem still far from solved. Who knows what are the conditions necessary to the evolution of the ever-present atoms into "vital" associations? Perhaps extreme pressure may be one of these conditions; and, for aught any man knows to the contrary, the "spontaneous generation" of living protoplasms may be taking place incessantly at the bottom of every ocean of the globe.
This of course is a mere bald statement of possibilities. It may be met by another statement of possibilities, to the effect that perhaps the conditions necessary to the evolution of living matter here may have been fulfilled but once, since which time the entire current of life on our globe has been a diversified stream from that one source. Observe, please, that this assumption does not fall within that category which I mention above as contraband of science in speaking of the origin of worlds. The existence of life on our globe is only an incident limited to a relatively insignificant period of time, and whether the exact conditions necessary to its evolution pertained but one second or a hundred million years does not in the least matter in a philosophical analysis. It is merely a question of fact, just as the particular temperature of the earth's surface at any given epoch is a question of fact, the one condition, like the other, being temporary and incidental. But, as I have said, the question of fact as to the exact time of origin of life on our globe is a question that science as yet cannot answer.
But, in any event, what is vastly more important than this question as to the duration of time in which living matter was evolved is a comprehension of the philosophical status of this evolution from the "non-vital" to the "vital." If one assumes that this evolution was brought about by an interruption of the play of forces hitherto working in the universe—that the correlation of forces involved was unique, acting then and then only—by that assumption he removes the question of the origin of life utterly from the domain of science—exactly as the assumption of an initial push would remove the question of the origin of worlds from the domain of science. But the science of to-day most emphatically demurs to any such assumption. Every scientist with a wide grasp of facts, who can think clearly and without prejudice over the field of what is known of cosmic evolution, must be driven to believe that the alleged wide gap between vital and non-vital matter is largely a figment of prejudiced human understanding. In the broader view there seem no gaps in the scheme of cosmic evolution—no break in the incessant reciprocity of atomic actions, whether those atoms be floating as a "fire mist" out in one part of space, or aggregated into the brain of a man in another part. And it seems well within the range of scientific expectation that the laboratory worker of the future will learn how so to duplicate telluric conditions that the universal forces will build living matter out of the inorganic in the laboratory, as they have done, and perhaps still are doing, in the terrestrial oceans.