In a pamphlet issued recently by one of the leading locomotive works of the country, some points of interest concerning the compound locomotive were stated concisely as follows:
"In stationary-engine practice the chief measure of the boiler efficiency is the economical consumption of coal. In most stationary engines the boilers are fired independently, and the draft is formed from causes entirely separate and beyond the control of the escape of steam from the cylinders. Hence any economy shown by the boilers must of necessity be separate and distinct from that which may be effected by the engine itself. In a locomotive, however, the amount of work depends entirely upon the weight on the driving wheels, the cylinder dimensions being proportioned to this weight, and, whether the locomotive is compound or single expansion, no larger boiler can be provided, after allowing for the wheels, frame and mechanism, than the total limit of weight permits. The heating surface and grate areas in both compound and single-expansion locomotives of the same class are practically the same, and the evaporative efficiency of both locomotives is chiefly determined by the action of the exhaust, which must be of sufficient intensity in both cases to generate the amount of steam necessary for utilizing to the best advantage the weight on the driving wheels. This is a feature that does not appear in any stationary engine, so that the compound locomotive cannot be judged by stationary standards, and the only true comparison to be made is between locomotives of similar construction and weight, equipped in one case with compound and in the other with single-expansion cylinders.
"No locomotive, compound or single-expansion, will haul more than its adhesion will allow. The weight on driving wheels is the limiting factor in the problem which confronts the locomotive engineer. Power can, of course, be increased by building a larger engine and augmenting this weight but in the present construction of tracks and bridges the limit of driving wheel load has almost been reached. Hence in modern locomotive practice the goal before the designer and engineer is to obtain maximum efficiency for the minimum weight admissible.
"It is not claimed for compound locomotives that a heavier train can be hauled at a given speed than with a single-expansion locomotive of similar weight and class; but the compound will, at very slow speed, on heavy grades, keep a train moving where a single-expansion will slip and stall. This is due to the pressure on the crank-pins of the compound being more uniform throughout the stroke than in the case of the single-expansion locomotive, and also to the fact that, when needed, live steam can be admitted to the low-pressure cylinders."
Of course, the principal reason for compounding the locomotive is to economize steam, and this is unquestionably accomplished; but nevertheless the comparative economy of compound and single-expansion locomotives was for some time a mooted question. Numerous tests have been made with these two classes of engines, and the widest ranges of differences were shown in many instances. In some cases the compounds seem to show a saving of some forty per cent. in fuel; but this is by no means a determinative factor in the daily use of an engine. It is found that repairs on the compound are more difficult to make, and consequently more expensive than on the single-expansion engines; but on the whole it is very generally conceded that the compound saves its owners from ten to twenty-five per cent. over the older type.
The rapid increase of the size, and consequent coal-consuming capacity, of the modern locomotive has added another problem to engineering—that of keeping the yawning maw of the fire-box supplied with coal. There is a limit to the amount of work that the fireman can do, and the great engines in use at present tax even the strongest fireman to the utmost. If the size or speed of locomotives is increased very materially in the future it will be necessary to have two men, instead of one, as firemen, or to use mechanical stokers, or to find some other kind of fuel. In point of fact the mechanical stoker has been recently tried with success, and this will probably help in solving the problem. But there is also the strong probability that the use of liquid fuel will become more and more popular. At the present time many locomotives in the West and Southwest, as well as in Europe and in Asia, have been equipped with burners for the consumption of crude petroleum. No modification in the construction of the locomotive is required for this change of fuel except some slight alteration in the arrangement of the brickwork of the fire-box, and the introduction of the burners. These, however, are simple arrangements that throw into the fire-box, a spray of steam and vaporized oil, which burns freely and generates an intense and steady heat. With this kind of fuel the fireman need not be considered, as the largest engine thus equipped may be "fired" with far less labor than is required on the smallest coal-burning, narrow-gauge locomotive.
THE WESTINGHOUSE AIR BRAKE
The application of steam as a motive power for running trains of cars solved one great problem; but it created another. The second one was the problem of how to stop the trains once they had started. On short trains made up of the light cars used at first, the hand brakes were sufficiently effective for practical purposes. But as trains were increased in length and weight and were run at high speeds, it became imperative to find some means of stopping such trains quickly and with certainty.
With a hand brake working on each pair of trucks, as on passenger coaches, it was possible to make reasonably quick stops when there were enough members of the train crew to work all the brakes simultaneously. But in practice it was found impossible to maintain this ideal condition. For emergency stops the brakemen were summoned by signals of the whistle given by the engineer, and there was necessarily some little interval of time after this signal before the most alert crew could begin the relatively slow process of applying the brakes.
The engineer himself could give valuable aid in stopping the train by reversing his engine, the locomotive acting as a brake to check the oncoming cars. But this check acted only at the forward part of the train, and being applied suddenly, caused the rear cars to rush against the forward cars with terrific force, sometimes driving in the bumpers and wrecking the train. Obviously an ideal system of brakes must be one that acted upon all the cars of the train simultaneously and under control of the engineer; and presently such a system was invented by Mr. George Westinghouse.