These first attempts to use the gyroscope at sea were of a technical character, and could have no great popular interest. But about twenty-five years ago an attempt was made to utilize the principle of the spinning-top in a way that would directly concern the personal comfort of a large number of voyagers. It was nothing less than the effort to give stability to a room on a steamship, in order that the fortunate occupant might avoid the evils of seasickness. The man who stood sponsor for the idea, and who expended sums variously estimated at from fifty thousand to more than a million dollars in the futile attempt to carry it into execution, was the famous Sir Henry Bessemer, famed for his revolutionary innovations in the steel industry. It would appear that Bessemer's first intention was to make a movable room to be balanced by mechanisms worked by hand. But after his project was under way his attention was called to the possibility of utilizing gyroscopic forces to the same end. As the story goes, he chanced to purchase a top for sixpence, and that small beginning led him ultimately to expend more than a million dollars in playing with larger tops. His expensive toy passed into history as the "Bessemer chamber." It was actually constructed on a Channel steamer; but the would-be inventor, practical engineer though he was, did not find a way properly to apply the principle, and his experiment ended in utter failure.

With this, the idea that the gyroscope-wheel could ever aid in steadying a ship at sea seemed to be proved a mere vagary unworthy the attention of engineers. But not all experimenters were disheartened, and since the day of Sir Henry Bessemer's fiasco a number of workers have given thought to the problem—with the object, however, of applying the powers of the revolving wheel not merely to a single room but to an entire ship. I have personal knowledge of at least one inventor, quite unknown to fame, who believed that he had solved the problem, but who died before he could put his invention to a practical test. It remained for a German engineer, Dr. Otto Schlick, to put before the world, first as a theory and then as a demonstration, the practical utility of the revolving wheel in preventing a ship from rolling.

DR. SCHLICK'S SUCCESSFUL EXPERIMENT

In the year 1904 Dr. Schlick elaborated his theory before the Society of Naval Architects in London. His paper aroused much interest in technical circles, but most of his hearers believed that it represented a theory that would never be made a tangible reality. Fortunately, however, Dr. Schlick was enabled to make a practical test, by constructing a wheel and installing it on a small ship—a torpedo-boat called the Sea-bar, discarded from the German navy. The vessel is one hundred and sixteen feet in length and of a little over fifty-six tons' displacement. The device employed consists of a fly-wheel one meter in diameter, weighing just over eleven hundred pounds and operated by a turbine mechanism capable of giving it a maximum velocity of sixteen hundred revolutions per minute. This powerful fly-wheel was installed in the hull of the Sea-bar on a vertical axis, whereas the Brennan gyroscope operates on a horizontal axis. So installed, the Schlick gyroscope does not interfere in the least with the steering or with the ordinary progression of the ship. Its sole design is to prevent the ship from rolling.

The expectations of its inventor were fully realized. On a certain day in July, 1906, with a sea so rough that the ship rolled through an arc of thirty degrees, when the balance-wheel was not in revolution, the arc of rolling was reduced to one degree when the great top was set spinning and its secondary bearings released. In other words, it practically abolished the rolling motion of the craft, causing its decks to remain substantially level, while the ship as a whole heaved up and down with the waves. These remarkable results, with more in kind, were recorded in the paper which Sir William White read before the Institution of Naval Architects in London in April, 1907. He himself had witnessed tests of the Schlick gyroscope, and, in common with his colleagues, he accepted the demonstrations as unequivocal.

Fully to understand the action of Dr. Schlick's invention, one must know that it is not a mere wheel on the single pivot, but a wheel adjusted in such a fashion that it can oscillate longitudinally while revolving on its vertical axis. In other words, it is precisely as if one of the two gyroscope-wheels used in the Brennan car (greatly enlarged) were so placed that its main axis was vertical, its secondary axis, or axis of oscillation, being horizontal and at right angles to the ship's length. Thus, while spinning on its vertical axis the body of the top is able to oscillate, pendulum-like, lengthwise of the ship.

In principle the action of this wheel is not different from that of an ordinary top on your table which wabbles to the right or to the left when you push its axis straight away from you. Yet to the untechnical observer it seems as if the Schlick gyroscope were a living thing, governed by almost human motives. If you apply a brake to prevent the longitudinal oscillations of the gyroscope, the effect, even though the fly-wheel still revolves at full speed, is precisely as if you pinioned the arms of a strong man, so that he saw the futility of resistance and made no struggle to free himself. Under such circumstances the gyroscope—though it continues to spin as hard as ever—has no effect whatever in preventing the rolling of the ship; it stands there, like the strong man bound, expressing its discontent with an angry groan.

But if you release the brake so that the entire mechanism is free to oscillate lengthwise of the ship, all is changed. It is as if you cut the cords that bound the strong man's arms. Instantly the mechanism springs into action. It will no longer allow itself to be swung with each roll of the ship; it will resist and prove which is master. Its mighty mass, pivoted on the lateral trunnions, lunges forward and backward with terrific force, as if it would tear loose from its bearings and dash the entire ship into pieces. It causes the ship to pitch a trifle fore and aft as it does so; but meantime its axis stands rigidly erect in the lateral plane, though the waves push against the sides of the ship as before. The decks of the vessel, that were tipping from side to side, so that loose objects slid from one rail to the other, are now held rigidly at a level, scarcely permitted to deviate to the extent of a violent tremor. The gyroscope has won the contest. To maintain its victory it must continue its backward and forward plunging; but from side to side its axis will not swerve.

DID GYROSCOPIC ACTION WRECK THE VIPER?

It was the failure to understand that a gyroscope-wheel, to work effectively, must be given opportunity to oscillate in this secondary fashion that led Sir Henry Bessemer to spend an enormous sum in a vain effort to accomplish on a small scale what Dr. Schlick's gyroscope accomplishes for the entire ship. Now it is clearly understood that a marine gyroscope on an absolutely fixed shaft cannot exercise its full action; but there is still a good deal of difference of opinion among engineers as to just how much a spinning body must be permitted to oscillate in order to make its gyroscopic effects noticeable. The discussion that has taken place over the loss of the torpedo-boat Viper furnishes a case in point.