In most situations of this sort, and in all of the second type (where the outcrop is outside the property), actual choice usually lies between combined shafts (C D F) and entire vertical shafts (H G). The difference between a combined shaft and a direct vertical shaft can be reduced to a comparison of the combined shaft below the point of intersection (D) with that portion of a vertical shaft which would cover the same horizon. The question then becomes identical with that of inclined versus verticals, as stated in Case III, with the offsetting disadvantage of the bend in the combined shaft. If it is desired to reach production at the earliest date, the lower section of a simple vertical shaft must have crosscuts to reach the ore lying above the horizon of its intersection (E). If production does not press, the ore above the intersection (EB) can be worked by rises from the horizon of intersection (E). In the use of rises, however, there follow the difficulties of ventilation and lowering the ore down to the shaft, which brings expenses to much the same thing as operating through crosscuts.
The advantages of combined over simple vertical shafts are earlier production, saving of either rises or crosscuts, and the ultimate utility of the shaft to any depth. The disadvantages are the cost of the extra length of the inclined section, slower winding, and greater wear and tear within the inclined section and especially around the bend. All these factors are of variable import, depending upon the dip. On very steep dips,—over 70°,—the net result is in favor of the simple vertical shaft. On other dips it is in favor of the combined shaft.
Cases V and VI. Mines to be worked to Great Depths,—over 3,000 Feet.—In Case V, with vertical or horizontal deposits, there is obviously no desirable alternative to vertical shafts.
In Case VI, with inclined deposits, there are the alternatives of a combined or of a simple vertical shaft. A vertical shaft in locations (H, Fig. 7) such as would not necessitate extension in depth by an incline, would, as in Case IV, compel either crosscuts to the ore or inclines up from the horizon of intersection (E). Apart from delay in coming to production and the consequent loss of interest on capital, the ventilation problems with this arrangement would be appalling. Moreover, the combined shaft, entering the deposit near its shallowest point, offers the possibility of a separate haulage system on the inclined and on the vertical sections, and such separate haulage is usually advisable at great depths. In such instances, the output to be handled is large, for no mine of small output is likely to be contemplated at such depth. Several moderate-sized inclines from the horizon of intersection have been suggested (EF, DG, CH, Fig. 8) to feed a large primary shaft (AB), which thus becomes the trunk road. This program would cheapen lateral haulage underground, as mechanical traction can be used in the main level, (EC), and horizontal haulage costs can be reduced on the lower levels. Moreover, separate winding engines on the two sections increase the capacity, for the effect is that of two trains instead of one running on a single track.
Shaft Location.—Although the prime purpose in locating a shaft is obviously to gain access to the largest volume of ore within the shortest haulage distance, other conditions also enter, such as the character of the surface and the rock to be intersected, the time involved before reaching production, and capital cost. As shafts must bear two relations to a deposit,—one as to the dip and the other as to the strike,—they may be considered from these aspects. Vertical shafts must be on the hanging-wall side of the outcrop if the deposit dips at all. In any event, the shaft should be far enough away to be out of the reach of creeps. An inclined shaft may be sunk either on the vein, in which case a pillar of ore must be left to support the shaft; or, instead, it may be sunk a short distance in the footwall, and where necessary the excavation above can be supported by filling. Following the ore has the advantage of prospecting in sinking, and in many cases the softness of the ground in the region of the vein warrants this procedure. It has, however, the disadvantage that a pillar of ore is locked up until the shaft is ready for abandonment. Moreover, as veins or lodes are seldom of even dip, an inclined shaft, to have value as a prospecting opening, or to take advantage of breaking possibilities in the lode, will usually be crooked, and an incline irregular in detail adds greatly to the cost of winding and maintenance. These twin disadvantages usually warrant a straight incline in the footwall. Inclines are not necessarily of the same dip throughout, but for reasonably economical haulage change of angle must take place gradually.
| Fig. 8.—Longitudinal section showing shaft arrangement proposed for very deep inclined deposits. |
In the case of deep-level projects on inclined deposits, demanding combined or vertical shafts, the first desideratum is to locate the vertical section as far from the outcrop as possible, and thus secure the most ore above the horizon of intersection. This, however, as stated before, would involve the cost of crosscuts or rises and would cause delay in production, together with the accumulation of capital charges. How important the increment of interest on capital may become during the period of opening the mine may be demonstrated by a concrete case. For instance, the capital of a company or the cost of the property is, say, $1,000,000, and where opening the mine for production requires four years, the aggregate sum of accumulated compound interest at 5% (and most operators want more from a mining investment) would be $216,000. Under such circumstances, if a year or two can be saved in getting to production by entering the property at a higher horizon, the difference in accumulated interest will more than repay the infinitesimal extra cost of winding through a combined shaft of somewhat increased length in the inclined section.
The unknown character of the ore in depth is always a sound reason for reaching it as quickly and as cheaply as possible. In result, such shafts are usually best located when the vertical section enters the upper portion of the deposit.
The objective in location with regard to the strike of the ore-bodies is obviously to have an equal length of lateral ore-haul in every direction from the shaft. It is easier to specify than to achieve this, for in all speculative deposits ore-shoots are found to pursue curious vagaries as they go down. Ore-bodies do not reoccur with the same locus as in the upper levels, and generally the chances to go wrong are more numerous than those to go right.
Number of Shafts.—The problem of whether the mine is to be opened by one or by two shafts of course influences location. In metal mines under Cases II and III (outcrop properties) the ore output requirements are seldom beyond the capacity of one shaft. Ventilation and escape-ways are usually easily managed through the old stopes. Under such circumstances, the conditions warranting a second shaft are the length of underground haul and isolation of ore-bodies or veins. Lateral haulage underground is necessarily disintegrated by the various levels, and usually has to be done by hand. By shortening this distance of tramming and by consolidation of the material from all levels at the surface, where mechanical haulage can be installed, a second shaft is often justified. There is therefore an economic limitation to the radius of a single shaft, regardless of the ability of the shaft to handle the total output.