Three means of determination of the average metal content of standing ore are in use—Previous Yield, Test-treatment Runs, and Sampling.
Previous Yield.—There are certain types of ore where the previous yield from known space becomes the essential basis of determination of quantity and metal contents of ore standing and of the future probabilities. Where metals occur like plums in a pudding, sampling becomes difficult and unreliable, and where experience has proved a sort of regularity of recurrence of these plums, dependence must necessarily be placed on past records, for if their reliability is to be questioned, resort must be had to extensive test-treatment runs. The Lake Superior copper mines and the Missouri lead and zinc mines are of this type of deposit. On the other sorts of deposits the previous yield is often put forward as of important bearing on the value of the ore standing, but such yield, unless it can be authentically connected with blocks of ore remaining, is not necessarily a criterion of their contents. Except in the cases mentioned, and as a check on other methods of determination, it has little place in final conclusions.
Test Parcels.—Treatment on a considerable scale of sufficiently regulated parcels, although theoretically the ideal method, is, however, not often within the realm of things practical. In examination on behalf of intending purchasers, the time, expense, or opportunity to fraud are usually prohibitive, even where the plant and facilities for such work exist. Even in cases where the engineer in management of producing mines is desirous of determining the value of standing ore, with the exception of deposits of the type mentioned above, it is ordinarily done by actual sampling, because separate mining and treatment of test lots is generally inconvenient and expensive. As a result, the determination of the value of standing ore is, in the great majority of cases, done by sampling and assaying.
Sampling.—The whole theory of sampling is based on the distribution of metals through the ore-body with more or less regularity, so that if small portions, that is samples, be taken from a sufficient number of points, their average will represent fairly closely the unit value of the ore. If the ore is of the extreme type of irregular metal distribution mentioned under "previous yield," then sampling has no place.
How frequently samples must be taken, the manner of taking them, and the quantity that constitutes a fair sample, are matters that vary with each mine. So much depends upon the proper performance of this task that it is in fact the most critical feature of mine examination. Ten samples properly taken are more valuable than five hundred slovenly ones, like grab samples, for such a number of bad ones would of a surety lead to wholly wrong conclusions. Given a good sampling and a proper assay plan, the valuation of a mine is two-thirds accomplished. It should be an inflexible principle in examinations for purchase that every sample must be taken under the personal supervision of the examining engineer or his trusted assistants. Aside from throwing open the doors to fraud, the average workman will not carry out the work in a proper manner, unless under constant supervision, because of his lack of appreciation of the issues involved. Sampling is hard, uncongenial, manual labor. It requires a deal of conscientiousness to take enough samples and to take them thoroughly. The engineer does not exist who, upon completion of this task, considers that he has got too many, and most wish that they had taken more.
The accuracy of sampling as a method of determining the value of standing ore is a factor of the number of samples taken. The average, for example, of separate samples from each square inch would be more accurate than those from each alternate square inch. However, the accumulated knowledge and experience as to the distribution of metals through ore has determined approximately the manner of taking such samples, and the least number which will still by the law of averages secure a degree of accuracy commensurate with the other factors of estimation.
As metals are distributed through ore-bodies of fissure origin with most regularity on lines parallel to the strike and dip, an equal portion of ore from every point along cross-sections at right angles to the strike will represent fairly well the average values for a certain distance along the strike either side of these cross-sections. In massive deposits, sample sections are taken in all directions. The intervals at which sample sections must be cut is obviously dependent upon the general character of the deposit. If the values are well distributed, a longer interval may be employed than in one subject to marked fluctuations. As a general rule, five feet is the distance most accepted. This, in cases of regular distribution of values, may be stretched to ten feet, or in reverse may be diminished to two or three feet.
The width of ore which may be included for one sample is dependent not only upon the width of the deposit, but also upon its character. Where the ore is wider than the necessary stoping width, the sample should be regulated so as to show the possible locus of values. The metal contents may be, and often are, particularly in deposits of the impregnation or replacement type, greater along some streak in the ore-body, and this difference may be such as to make it desirable to stope only a portion of the total thickness. For deposits narrower than the necessary stoping width the full breadth of ore should be included in one sample, because usually the whole of the deposit will require to be broken.
In order that a payable section may not possibly be diluted with material unnecessary to mine, if the deposit is over four feet and under eight feet, the distance across the vein or lode is usually divided into two samples. If still wider, each is confined to a span of about four feet, not only for the reason given above, but because the more numerous the samples, the greater the accuracy. Thus, in a deposit twenty feet wide it may be taken as a good guide that a test section across the ore-body should be divided into five parts.
As to the physical details of sample taking, every engineer has his own methods and safeguards against fraud and error. In a large organization of which the writer had for some years the direction, and where sampling of mines was constantly in progress on an extensive scale, not only in contemplation of purchase, but where it was also systematically conducted in operating mines for working data, he adopted the above general lines and required the following details.