It is not proposed to enter a discussion of mechanical details of air-compression, more than to call attention to the most common delinquency in the installation of such plants. This deficiency lies in insufficient compression capacity for the needs of the mine and consequent effective operation of drills, for with under 75 pounds pressure the drills decrease remarkably in rapidity of stroke and force of the blow. The consequent decrease in actual accomplishment is far beyond the ratio that might be expected on the basis of mere difference of pressure. Another form of the same chronic ill lies in insufficient air-storage capacity to provide for maintenance of pressure against moments when all drills or motors in the mine synchronize in heavy demand for air, and thus lower the pressure at certain periods.

Air-drills.—Air-drills are from a mechanical point of view broadly of two types,—the first, in which the drill is the piston extension; and the second, a more recent development for mining work, in which the piston acts as a hammer striking the head of the drill. From an economic point of view drills may be divided into three classes. First, heavy drills, weighing from 150 to 400 pounds, which require two men for their operation; second, "baby" drills of the piston type, weighing from 110 to 150 pounds, requiring one man with occasional assistance in setting up; and third, very light drills almost wholly of the hammer type. This type is built in two forms: a heavier type for mounting on columns, weighing about 80 pounds; and a type after the order of the pneumatic riveter, weighing as low as 20 pounds and worked without mounting.

The weight and consequent mobility of a drill, aside from labor questions, have a marked effect on costs, for the lighter the drill the less difficulty and delay in erection, and consequent less loss of time and less tendency to drill holes from one radius, regardless of pointing to take best advantage of breaking planes. Moreover, smaller diameter and shorter holes consume less explosives per foot advanced or per ton broken. The best results in tonnage broken and explosive consumed, if measured by the foot of drill-hole necessary, can be accomplished from hand-drilling and the lighter the machine drill, assuming equal reliability, the nearer it approximates these advantages.

The blow, and therefore size and depth of hole and rapidity of drilling, are somewhat dependent upon the size of cylinders and length of stroke, and therefore the heavier types are better adapted to hard ground and to the deep holes of some development points. Their advantages over the other classes lie chiefly in this ability to bore exceedingly hard material and in the greater speed of advance possible in development work; but except for these two special purposes they are not as economical per foot advanced or per ton of ore broken as the lighter drills.

The second class, where men can be induced to work them one man per drill, saves in labor and gains in mobility. Many tests show great economy of the "baby" type of piston drills in average ground over the heavier machines for stoping and for most lateral development. All piston types are somewhat cumbersome and the heavier types require at least four feet of head room. The "baby" type can be operated in less space than this, but for narrow stopes they do not lend themselves with the same facility as the third class.

The third class of drills is still in process of development, but it bids fair to displace much of the occupation of the piston types of drill. Aside from being a one-man drill, by its mobility it will apparently largely reproduce the advantage of hand-drilling in ability to place short holes from the most advantageous angles and for use in narrow places. As compared with other drills it bids fair to require less time for setting up and removal and for change of bits; to destroy less steel by breakages; to dull the bits less rapidly per foot of hole; to be more economical of power; to require much less skill in operation, for judgment is less called upon in delivering speed; and to evade difficulties of fissured ground, etc. And finally the cost is only one-half, initially and for spares. Its disadvantage so far is a lack of reliability due to lightness of construction, but this is very rapidly being overcome. This type, however, is limited in depth of hole possible, for, from lack of positive reverse movement, there is a tendency for the spoil to pack around the bit, and as a result about four feet seems the limit.

The performance of a machine-drill under show conditions may be anything up to ten or twelve feet of hole per hour on rock such as compact granite; but in underground work a large proportion of the time is lost in picking down loose ore, setting up machines, removal for blasting, clearing away spoil, making adjustments, etc. The amount of lost time is often dependent upon the width of stope or shaft and the method of stoping. Situations which require long drill columns or special scaffolds greatly accentuate the loss of time. Further, the difficulties in setting up reflect indirectly on efficiency to a greater extent in that a larger proportion of holes are drilled from one radius and thus less adapted to the best breaking results than where the drill can easily be reset from various angles.

The usual duty of a heavy drill per eight-hour shift using two men is from 20 to 40 feet of hole, depending upon the rock, facilities for setting up, etc., etc.[*] The lighter drills have a less average duty, averaging from 15 to 25 feet per shift.

[Footnote *: Over the year 1907 in twenty-eight mines compiled from Alaska to Australia, an average of 23.5 feet was drilled per eight-hour shift by machines larger than three-inch cylinder.]

Machine vs. Hand-Drilling.—The advantages of hand-drilling over machine-drilling lie, first, in the total saving of power, the absence of capital cost, repairs, depreciation, etc., on power, compresser and drill plant; second, the time required for setting up machine-drills does not warrant frequent blasts, so that a number of holes on one radius are a necessity, and therefore machine-holes generally cannot be pointed to such advantage as hand-holes. Hand-holes can be set to any angle, and by thus frequent blasting yield greater tonnage per foot of hole. Third, a large number of comparative statistics from American, South African, and Australian mines show a saving of about 25% in explosives for the same tonnage or foot of advance by hand-holes over medium and heavy drill-holes.