Here, not discriminating among the special effects which these various forces and matters in the environment produce on both classes of bodies, let us consider their combined effects, and ask—What is the most general trait of such effects?

Obviously the most general trait is the greater amount of change wrought on the outer surface than on the inner mass. In so far as the matters of which the medium is composed come into play, the unavoidable implication is that they act more on the parts directly exposed to them than on the parts sheltered from them. And in so far as the forces pervading the medium come into play, it is manifest that, excluding gravity, which affects outer and inner parts indiscriminately, the outer parts have to bear larger shares of their actions. If it is a question of heat, then the exterior must lose it or gain it faster than the interior; and in a medium which is now warmer and now colder, the two must habitually differ in temperature to some extent—at least where the size is considerable. If it is a question of light, then in all but absolutely transparent masses, the outer parts must undergo more of any change producible by it than the inner parts—supposing other things equal; by which I mean, supposing the case is not complicated by any such convexities of the outer surface as produce internal concentrations of rays. Hence then, speaking generally, the necessity is that the primary and almost universal effect of the converse between the body and its medium, is to differentiate its outside from its inside. I say almost universal, because where the body is both mechanically and chemically stable, like, for instance, a quartz crystal, the medium may fail to work either inner or outer change.

Of illustrations among inorganic bodies, a convenient one is supplied by an old cannon-ball that has been long lying exposed. A coating of rust, formed of flakes within flakes, incloses it; and this thickens year by year, until, perhaps, it reaches a stage at which its exterior loses as much by rain and wind as its interior gains by further oxidation of the iron. Most mineral masses—pebbles, boulders, rocks—if they show any effect of the environment at all, show it only by that disintegration of surface which follows the freezing of absorbed water: an effect which, though mechanical rather than chemical, equally illustrates the general truth. Occasionally a "rocking-stone" is thus produced. There are formed successive layers relatively friable in texture, each of which, thickest at the most exposed parts, and being presently lost by weathering, leaves the contained mass in a shape more rounded than before; until, resting on its convex under-surface, it is easily moved. But of all instances perhaps the most remarkable is one to be seen on the west bank of the Nile at Philæ, where a ridge of granite 100 feet high, has had its outer parts reduced in course of time to a collection of boulder-shaped masses, varying from say a yard in diameter to six or eight feet, each one of which shows in progress an exfoliation of successively-formed shells of decomposed granite: most of the masses having portions of such shells partially detached.

If, now, inorganic masses, relatively so stable in composition, thus have their outer parts differentiated from their inner parts, what must we say of organic masses, characterized by such extreme chemical instability?—instability so great that their essential material is named protein, to indicate the readiness with which it passes from one isomeric form to another. Clearly the necessary inference is that this effect of the medium must be wrought inevitably and promptly, wherever the relation of outer and inner has become settled: a qualification for which the need will be seen hereafter.


Beginning with the earliest and most minute kinds of living things, we necessarily encounter difficulties in getting direct evidence; since, of the countless species now existing, all have been subject during millions upon millions of years to the evolutionary process, and have had their primary traits complicated and obscured by those endless secondary traits which the natural selection of favourable variations has produced. Among protophytes it needs but to think of the multitudinous varieties of diatoms and desmids, with their elaborately-constructed coverings; or of the definite methods of growth and multiplication among such simple Algæ as the Conjugatæ; to see that most of their distinctive characters are due to inherited constitutions, which have been slowly moulded by survival of the fittest to this or that mode of life. To disentangle such parts of their developmental changes as are due to the action of the medium, is therefore hardly possible. We can hope only to get a general conception of it by contemplating the totality of the facts.

The first cardinal fact is that all protophytes are cellular—all show us this contrast between outside and inside. Supposing the multitudinous specialities of the envelope in different orders and genera of protophytes to be set against one another, and mutually cancelled, there remains as a trait common to them—an envelope unlike that which it envelopes. The second cardinal fact is that this simple trait is the earliest trait displayed in germs, or spores, or other parts from which new individuals are to arise; and that, consequently, this trait must be regarded as having been primordial. For it is an established truth of organic evolution that embryos show us, in general ways, the forms of remote ancestors; and that the first changes undergone, indicate, more or less clearly, the first changes which took place in the series of forms through which the existing form has been reached. Describing, in successive groups of plants, the early transformations of these primitive units, Sachs[44] says of the lowest Algæ that "the conjugated protoplasmic body clothes itself with a cell-wall" (p. 10); that in "the spores of Mosses and Vascular Cryptogams" and in "the pollen of Phanerogams" ... "the protoplasmic body of the mother-cell breaks up into four lumps, which quickly round themselves off and contract, and become enveloped by a cell-membrane only after complete separation" (p. 13); that in the Equisetaceæ "the young spores, when first separated, are still naked, but they soon become surrounded by a cell-membrane" (p. 14); and that in higher plants, as in the pollen of many Dicotyledons, "the contracting daughter-cells secrete cellulose even during their separation" (p. 14). Here, then, in whatever way we interpret it, the fact is that there quickly arises an outer layer different from the contained matter. But the most significant evidence is furnished by "the masses of protoplasm that escape into water from the injured sacs of Vaucheria, which often instantly become rounded into globular bodies," and of which the "hyaline protoplasm envelopes the whole as a skin" (p. 41) which "is denser than the inner and more watery substance" (p. 42). As in this case the protoplasm is but a fragment, and as it is removed from the influence of the parent-cell, this differentiating process can scarcely be regarded as anything more than the effect of physico-chemical actions: a conclusion which is supported by the statement of Sachs that "not only every vacuole in a solid protoplasmic body, but also every thread of protoplasm which penetrates the sap-cavity, and finally the inner side of the protoplasm-sac which encloses the sap-cavity, is also bounded by a skin" (p. 42). If then "every portion of a protoplasmic body immediately surrounds itself, when it becomes isolated, with such a skin," which is shown in all cases to arise at the surface of contact with sap or water, this primary differentiation of outer from inner must be ascribed to the direct action of the medium. Whether the coating thus initiated is secreted by the protoplasm, or whether, as seems more likely, it results from transformation of it, matters not to the argument. Either way the action of the medium causes its formation; and either way the many varied and complex differentiations which developed cell-walls display, must be considered as originating from those variations of this physically-generated covering which natural selection has taken advantage of.

The contained protoplasm of a vegetal cell, which has self-mobility and when liberated sometimes performs amœba-like motions for a time, may be regarded as an imprisoned amœba; and when we pass from it to a free amœba, which is one of the simplest types of first animals, or Protozoa, we naturally meet with kindred phenomena. The general trait which here concerns us, is that while its plastic or semi-fluid sarcode goes on protruding, in irregular ways, now this and now that part of its periphery, and again withdrawing into its interior first one and then another of these temporary processes, perhaps with some small portion of food attached, there is but an indistinct differentiation of outer from inner (a fact shown by the frequent coalescence of the pseudopodia in Rhizopods); but that when it eventually becomes quiescent, the surface becomes differentiated from the contents: the passing into an encysted state, doubtless in large measure due to inherited proclivity, being furthered, and having probably been once initiated, by the action of the medium. The connexion between constancy of relative position among the parts of the sarcode, and the rise of a contrast between superficial and central parts, is perhaps best shown in the minutest and simplest Infusoria, the Monadinæ. The genus Monas is described by Kent as "plastic and unstable in form, possessing no distinct cuticular investment; ... the food-substances incepted at all parts of the periphery";[45] and the genus Scytomonas he says "differs from Monas only in its persistent shape and accompanying greater rigidity of the peripheral or ectoplasmic layer."[46] Describing generally such low forms, some of which are said to have neither nucleus nor vacuole, he remarks that in types somewhat higher "the outer or peripheral border of the protoplasmic mass, while not assuming the character of a distinct cell-wall or so-called cuticle, presents, as compared with the inner substance of that mass, a slightly more solid type of composition."[47] And it is added that these forms having so slightly differentiated an exterior, "while usually exhibiting a more or less characteristic normal outline, can revert at will to a pseud-amœboid and repent state."[48] Here, then, we have several indications of the truth that the permanent externality of a certain part of the substance, is followed by transformation of it into a coating unlike the substance it contains. Indefinite and structureless in the simplest of these forms, as instance again the Gregarina,[49] the limiting membrane becomes, in higher Infusoria, definite and often complex: showing that the selection of favourable variations has had largely to do with its formation. In such types as the Foraminifera, which, almost structureless internally though they are, secrete calcareous shells, it is clear that the nature of this outer layer is determined by inherited constitution. But recognition of this consists with the belief that the action of the medium initiated the outer layer, specialized though it now is; and that even still, contact with the medium excites secretion of it.

A remarkable analogy remains to be named. When we study the action of the medium in an inorganic mass, we are led to see that between the outer changed layer and the inner unchanged mass, comes a surface where active change is going on. Here we have to note that, alike in the plant-cell and in the animal-cell, there is a similar relation of parts. Immediately inside the envelope comes the primordial utricle in the one case, and in the other case the layer of active sarcode. In either case the living protoplasm, placed in the position of a lining to the cuticle of the cell, is shielded from the direct action of the medium, and yet is not beyond the reach of its influences.