Less startling perhaps, though still startling enough, is the fact that the eye is evolved out of a portion of the skin; and that while the crystalline lens and its surroundings thus originate, the "percipient portions of the organs of special sense, especially of optic organs, are often formed from the same part of the primitive epidermis" which forms the central nervous system.[59] Similarly is it with the organs for smelling and hearing. These, too, begin as sacs formed by infoldings of the epidermis; and while their parts are developing they are joined from within by nervous structures which were themselves epidermic in origin. How are we to interpret these strange transformations? Observing, as we pass, how absurd from the point of view of the special-creationist, would appear such a filiation of structures, and such a round-about mode of embryonic development, we have here to remark that the process is not one to have been anticipated as a result of natural selection. After numbers of spontaneous variations had occurred, as the hypothesis implies, in useless ways, the variation which primarily initiated a nervous centre might reasonably have been expected to occur in some internal part where it would be fitly located. Its initiation in a dangerous place and subsequent migration to a safe place, would be incomprehensible. Not so if we bear in mind the cardinal truth above set forth, that the structures for holding converse with the medium and its contents, arise in that completely superficial part which is directly affected by the medium and its contents; and if we draw the inference that the external actions themselves initiate the structures. These once commenced, and furthered by natural selection where favourable to life, would form the first term of a series ending in developed sense organs and a developed nervous system.[60]
Though it would enforce the argument, I must, for brevity's sake, pass over the analogous evolution of that introverted layer, or hypoblast, out of which the alimentary canal and attached organs arise. It will suffice to emphasize the fact that having been originally external, this layer continues in its developed form to have a quasi-externality, alike in its digesting part and in its respiratory part; since it continues to deal with matters alien to the organism. I must also refrain from dwelling at length on the fact already adverted to, that the intermediate derived layer, or mesoblast, which was at the outset completely internal, originates those structures which ever remain completely internal, and have no communication with the environment save through the structures developed from the other two: an antithesis which has great significance.
Here, instead of dwelling on these details, it will be better to draw attention to the most general aspect of the facts. Whatever may be the course of subsequent changes, the first change is the formation of a superficial layer or blastoderm; and by whatever series of transformations the adult structure is reached, it is from the blastoderm that all the organs forming the adult originate. Why this marvellous fact?
Meaning is given to it if we go back to the first stage in which Protozoa, having by repeated fissions formed a cluster, then arranged themselves into a hollow sphere, as do the protophytes forming a Volvox. Originally alike all over its surface, the hollow sphere of ciliated units thus formed, would, if not quite spherical, assume a constant attitude when moving through the water; and hence one part of the spheroid would more frequently than the rest come in contact with nutritive matters to be taken in. A division of labour resulting from such a variation being advantageous, and tending therefore to increase in descendants, would end in a differentiation like that shown in the gemmules of various low types of Metazoa, which, ovate in shape, are ciliated over one part of the surface only. There would arise a form in which the cilium-bearing units effected locomotion and aeration; while on the others, assuming an amœba-like character, devolved the function of absorbing food: a primordial specialization variously indicated by evidence.[61] Just noting that an ancestral origin of this kind is implied by the fact that in low types of Metazoa a hollow sphere of cells is the form first assumed by the unfolding embryo, I draw attention to the point here of chief interest; namely that the primary differentiation of this hollow sphere is in such case determined by a difference in the converse of its parts with the medium and its contents; and that the subsequent invagination arises by a continuance of this differential converse.
Even neglecting this first stage and commencing with the next, in which a "gastrula" has been produced by the permanent introversion of one portion of the surface of the hollow sphere, it will suffice if we consider what must thereafter have happened. That which continued to be the outer surface was the part which from time to time touched quiescent masses and occasionally received the collisions consequent on its own motions or the motions of other things. It was the part to receive the sound-vibrations occasionally propagated through the water; the part to be affected more strongly than any other by those variations in the amounts of light caused by the passing of small bodies close to it; and the part which met those diffused molecules constituting odours. That is to say, from the beginning the surface was the part on which there fell the various influences pervading the environment, the part by which there was received those impressions from the environment serving for the guidance of actions, and the part which had to bear the mechanical re-actions consequent upon such actions. Necessarily, therefore, the surface was the part in which were initiated the various instrumentalities for carrying on intercourse with the environment. To suppose otherwise is to suppose that such instrumentalities arose internally where they could neither be operated on by surrounding agencies nor operate on them,—where the differentiating forces did not come into play, and the differentiated structures had nothing to do; and it is to suppose that meanwhile the parts directly exposed to the differentiating forces remained unchanged. Clearly, then, organization could not but begin on the surface; and having thus begun, its subsequent course could not but be determined by its superficial origin. And hence these remarkable facts showing us that individual evolution is accomplished by successive in-foldings and in-growings. Doubtless natural selection soon came into action, as, for example, in the removal of the rudimentary nervous centres from the surface; since an individual in which they were a little more deeply seated would be less likely to be incapacitated by injury of them. And so in multitudinous other ways. But nevertheless, as we here see, natural selection could operate only under subjection. It could do no more than take advantage of those structural changes which the medium and its contents initiated.
See, then, how large has been the part played by this primordial factor. Had it done no more than give to Protozoa and Protophyta that cell-form which characterizes them—had it done no more than entail the cellular composition which is so remarkable a trait of Metazoa and Metaphyta—had it done no more than cause the repetition in all visible animals and plants of that primary differentiation of outer from inner which it first wrought in animals and plants invisible to the naked eye; it would have done much towards giving to organisms of all kinds certain leading traits. But it has done more than this. By causing the first differentiations of those clusters of units out of which visible animals in general arose, it fixed the starting place for organization, and therefore determined the course of organization; and, doing this, gave indelible traits to embryonic transformations and to adult structures.
Though mainly carried on after the inductive method, the argument at the close of the foregoing section has passed into the deductive. Here let us follow for a space the deductive method pure and simple. Doubtless in biology à priori reasoning is dangerous; but there can be no danger in considering whether its results coincide with those reached by reasoning à posteriori.
Biologists in general agree that in the present state of the world, no such thing happens as the rise of a living creature out of non-living matter. They do not deny, however, that at a remote period in the past, when the temperature of the Earth's surface was much higher than at present, and other physical conditions were unlike those we know, inorganic matter, through successive complications, gave origin to organic matter. So many substances once supposed to belong exclusively to living bodies, have now been formed artificially, that men of science scarcely question the conclusion that there are conditions under which, by yet another step of composition, quaternary compounds of lower types pass into those of highest types. That there once took place gradual divergence of the organic from the inorganic, is, indeed, a necessary implication of the hypothesis of Evolution, taken as a whole; and if we accept it as a whole, we must put to ourselves the question—What were the early stages of progress which followed, after the most complex form of matter had arisen out of forms of matter a degree less complex?
At first, protoplasm could have had no proclivities to one or other arrangement of parts; unless, indeed, a purely mechanical proclivity towards a spherical form when suspended in a liquid. At the outset it must have been passive. In respect of its passivity, primitive organic matter must have been like inorganic matter. No such thing as spontaneous variation could have occurred in it; for variation implies some habitual course of change from which it is a divergence, and is therefore excluded where there is no habitual course of change. In the absence of that cyclical series of metamorphoses which even the simplest living thing now shows us, as a result of its inherited constitution, there could be no point d'appui for natural selection. How, then, did organic evolution begin?