In optics, again, the Greeks found that the angle of incidence is equal to the angle of reflection; and their knowledge reached no further than to such simple deductions from this as their geometry sufficed for. In acoustics they ascertained the fact that three strings of equal lengths would yield the octave, fifth and fourth, when strained by weights having certain definite ratios; and they did not progress much beyond this. In the one of which cases we see geometry used in elucidation of the laws of light; and in the other, geometry and arithmetic made to measure certain phenomena of sound.
While sundry sciences had thus reached the first stages of quantitative prevision, others were progressing in qualitative prevision. It must suffice just to note that some small generalizations were made respecting evaporation, and heat, and electricity, and magnetism, which, empirical as they were, did not in that respect differ from the first generalizations of every science; that the Greek physicians had made advances in physiology and pathology, which, considering the great imperfection of our present knowledge, are by no means to be despised; that zoology had been so far systematized by Aristotle, as, to some extent, enabled him from the presence of certain organs to predict the presence of others; that in Aristotle’s Politics, is shown progress towards a scientific conception of social phenomena, and sundry previsions respecting {58} them; and that in the state of the Greek societies, as well as in the writings of Greek philosophers, we may recognize both an increasing clearness in the conception of equity and some appreciation of the fact that social stability depends on the maintenance of equitable relations. Space permitting, we might dwell on the causes which retarded the development of some of the sciences, as for example, chemistry; showing that relative complexity had nothing to do with it—that the oxidation of a piece of iron is a simpler phenomenon than the recurrence of eclipses, and the discovery of carbonic acid less difficult than that of the precession of the equinoxes. The relatively slow advance of chemical knowledge might be shown to be due, partly to the fact that its phenomena were not daily thrust on men’s notice as those of astronomy were; partly to the fact that Nature does not habitually supply the means, and suggest the modes of investigation, as in the sciences dealing with time, extension, and force; partly to the fact that the great majority of the materials with which chemistry deals, instead of being ready to hand, are made known only by the arts in their slow growth; and partly to the fact that even when known, their chemical properties are not self-exhibited, but have to be sought out by experiment.
Merely indicating these considerations, however, let us go on to contemplate the progress and mutual influence of the sciences in modern days; only parenthetically noticing how, on the revival of the scientific spirit, the successive stages achieved exhibit the dominance of the law hitherto traced—how the primary idea in dynamics, a uniform force, was defined by Galileo to be a force which generates equal velocities in equal successive times—how the uniform action of gravity was first experimentally determined by showing that the time elapsing before a body thrown up, stopped, was equal to the time it took to fall—how the first fact in compound motion which Galileo {59} ascertained was, that a body projected horizontally, will describe equal horizontal spaces in equal times, compounded vertical spaces described which increase by equal increments in equal times—how his discovery respecting the pendulum was, that its oscillations occupy equal intervals of time whatever their lengths—how the law which he established that in any machine the weights that balance each other, are reciprocally as their virtual velocities implies that the relation of one set of weights to their velocities equals the relation of the other set of velocities to their weights;—and how thus his achievements consisted in showing the equalities of certain magnitudes and relations, whose equalities had not been previously recognized.
And now, but only now, physical astronomy became possible. The simple laws of force had been disentangled from those of friction and atmospheric resistance by which all their earthly manifestations are disguised. Progressing knowledge of terrestrial physics had given a due insight into these disturbing causes; and, by an effort of abstraction, it was perceived that all motion would be uniform and rectilinear unless interfered with by external forces. Geometry and mechanics having diverged from a common root in men’s sensible experiences, and having, with occasional inosculations, been separately developed, the one partly in connexion with astronomy, the other solely by analyzing terrestrial movements, now join in the investigations of Newton to create a true theory of the celestial motions. And here, also, we have to notice the important fact that, in the very process of being brought jointly to bear upon astronomical problems, they are themselves raised to a higher phase of development. For it was in dealing with the questions raised by celestial dynamics that the then incipient infinitesimal calculus was unfolded by Newton and his continental successors; and it was from inquiries into the mechanics of the solar system that the general theorems of mechanics contained in the {60} Principia—many of them of purely terrestrial application—took their rise. Thus, as in the case of Hipparchus, the presentation of a new order of concrete facts to be analyzed, led to the discovery of new abstract facts; and these abstract facts then became instruments of access to endless groups of concrete facts previously beyond quantitative treatment.
Meanwhile, physics had been carrying further that progress without which, as just shown, rational mechanics could not be disentangled. In hydrostatics, Stevinus had extended and applied the discovery of Archimedes. Torricelli had proved atmospheric pressure, “by showing that this pressure sustained different liquids at heights inversely proportional to their densities;” and Pascal “established the necessary diminution of this pressure at increasing heights in the atmosphere”: discoveries which in part reduced this branch of science to a quantitative form. Something had been done by Daniel Bernouilli towards the dynamics of fluids. The thermometer had been invented; and sundry small generalizations reached by it. Huyghens and Newton had made considerable progress in optics; Newton had approximately calculated the rate of transmission of sound; and the continental mathematicians had ascertained some of the laws of sonorous vibrations. Magnetism and electricity had been considerably advanced by Gilbert. Chemistry had got as far as the mutual neutralization of acids and alkalies. And Leonardo da Vinci had advanced in geology to the conclusion that the deposition of animal remains in marine strata is the origin of fossils. Our present purpose does not require that we should give particulars. Here it only concerns us to illustrate the consensus subsisting in this stage of growth, and afterwards. Let us look at a few cases.
The theoretic law of the velocity of sound deduced by Newton from purely mechanical data, was found wrong by one-sixth. The error remained unaccounted for until the {61} time of Laplace, who, suspecting that the heat disengaged by the compression of the undulating strata of the air, gave additional elasticity, and so produced the difference, made the needful calculations and found he was right. Thus acoustics was arrested until thermology overtook and aided it. When Boyle and Marriot had discovered the relation between the densities of gases and the pressures they are subject to; and when it thus became possible to calculate the rate of decreasing density in the upper parts of the atmosphere; it also became possible to make approximate tables of the atmospheric refraction of light. Thus optics, and with it astronomy, advanced with barology. After the discovery of atmospheric pressure had led to the invention of the air-pump by Otto Guericke; and after it had become known that evaporation increases in rapidity as atmospheric pressure decreases; it became possible for Leslie, by evaporation in a vacuum, to produce the greatest cold known; and so to extend our knowledge of thermology by showing that there is no zero within reach of our researches. When Fourier had determined the laws of conduction of heat, and when the Earth’s temperature had been found to increase below the surface one degree in every forty yards, there were data for inferring the past condition of our globe; the vast period it has taken to cool down to its present state; and the immense age of the solar system—a purely astronomical consideration. Chemistry having advanced sufficiently to supply the needful materials, and a physiological experiment having furnished the requisite hint, there came the discovery of galvanic electricity. Galvanism reacting on chemistry disclosed the metallic bases of the alkalies and earths, and inaugurated the electro-chemical theory; in the hands of Oersted and Ampère it led to the laws of magnetic action; and by its aid Faraday has detected significant facts relative to the constitution of light. Brewster’s discoveries respecting double refraction and {62} dipolarization proved the essential truth of the classification of crystalline forms according to the number of axes, by showing that the molecular constitution depends on the axes. Now in these and in numerous other cases, the mutual influence of the sciences has been quite independent of any supposed hierarchical order. Often, too, their inter-actions are more complex than as thus instanced—involve more sciences than two. One illustration of this must suffice. We quote it in full from the History of the Inductive Sciences. In Book XI., chap. II., on “The Progress of the Electrical Theory,” Dr. Whewell writes:—
“Thus at that period, mathematics was behind experiment, and a problem was proposed, in which theoretical numerical results were wanted for comparison with observation, but could not be accurately obtained; as was the case in astronomy also, till the time of the approximate solution of the problem of three bodies, and the consequent formation of the tables of the moon and planets, on the theory of universal gravitation. After some time, electrical theory was relieved from this reproach, mainly in consequence of the progress which astronomy had occasioned in pure mathematics. About 1801 there appeared in the Bulletin des Sciences, an exact solution of the problem of the distribution of electric fluid on a spheroid, obtained by Biot, by the application of the peculiar methods which Laplace had invented for the problem of the figure of the planets. And, in 1811, M. Poisson applied Laplace’s artifices to the case of two spheres acting upon one another in contact, a case to which many of Coulomb’s experiments were referrible; and the agreement of the results of theory and observation, thus extricated from Coulomb’s numbers obtained above forty years previously, was very striking and convincing.”
Not only do the sciences affect each other after this direct manner, but they affect each other indirectly. Where there is no dependence, there is yet analogy—likeness of relations; and the discovery of the relations subsisting among one set of phenomena, constantly suggests a search for similar relations among another set. Thus the established fact that the force of gravitation varies inversely as the square of the distance, being recognized as a necessary characteristic of all influences proceeding from a centre, raised the suspicion that heat and light follow the same law; which proved to be the case—a suspicion and a {63} confirmation which were repeated in respect to the electric and magnetic forces. Thus, again, the discovery of the polarization of light led to experiments which ended in the discovery of the polarization of heat—a discovery that could never have been made without the antecedent one. Thus, too, the known refrangibility of light and heat lately produced the inquiry whether sound also is not refrangible; which on trial it turns out to be. In some cases, indeed, it is only by the aid of conceptions derived from one class of phenomena that hypotheses respecting other classes can be formed. The theory, at one time favoured, that evaporation is a solution of water in air, assumed that the relation between water and air is like the relation between water and a dissolved solid; and could never have been conceived if relations like that between salt and water had not been previously known. Similarly the received theory of evaporation—that it is a diffusion of the particles of the evaporating fluid in virtue of their atomic repulsion—could not have been entertained without a foregoing experience of magnetic and electric repulsions. So complete in recent days has become this consensus among the sciences, caused either by the natural entanglement of their phenomena, or by analogies between the relations of their phenomena, that scarcely any considerable discovery concerning one order of facts now takes place, without shortly leading to discoveries concerning other orders.
To produce a complete conception of this process of scientific evolution it would be needful to go back to the beginning, and trace in detail the growth of classifications and nomenclatures; and to show how, as subsidiary to science, they have acted upon it while it has reacted upon them. We can only now remark that, on the one hand, classifications and nomenclatures have aided science by subdividing the subject-matter of research, and giving fixity and diffusion to the truths disclosed; and that on the other hand, they have caught from it that increasing {64} quantitativeness, and that progress from considerations touching single phenomena to considerations touching the relations among many phenomena, which we have been describing. Of this last influence a few illustrations must be given. In chemistry it is seen in the facts that the dividing of matter into the four elements was ostensibly based on the single property of weight, that the first truly chemical division into acid and alkaline bodies, grouped together bodies which had not simply one property in common but in which one property was constantly related to many others, and that the classification now current, places together in the groups supporters of combustion, metallic and non-metallic bases, acids, salts, &c., bodies which are often quite unlike in sensible qualities, but which are like in the majority of their relations to other bodies. In mineralogy again, the first classifications were based on differences in aspect, texture, and other physical attributes. Berzelius made two attempts at a classification based solely on chemical constitution. That now current recognizes, as far as possible, the relations between physical and chemical characters. In botany the earliest classes formed were trees, shrubs, and herbs: magnitude being the basis of distinction. Dioscorides divided vegetables into aromatic, alimentary, medicinal, and vinous: a division of chemical character. Cæsalpinus classified them by the seeds and seed-vessels, which he preferred because of the relations found to subsist between the character of the fructification and the general character of the other parts. While the “natural system” since developed, carrying out the doctrine of Linnæus, that “the natural orders must be formed by attention not to one or two, but to all the parts of plants,” bases its divisions on like peculiarities which are found to be constantly related to the greatest number of other like peculiarities. And similarly in zoology, the successive classifications, from having been originally determined by external and often {65} subordinate characters not indicative of the essential nature, have been more and more determined by those internal and fundamental differences, which have uniform relations to the greatest number of other differences. Nor shall we be surprised at this analogy between the modes of progress of positive science and classification, when we bear in mind that both proceed by making generalizations; that both enable us to make previsions, differing only in their precision; and that while the one deals with equal properties, magnitudes, and relations, the other deals with properties and relations which approximate towards equality in various degrees.
Without further argument it will, we think, be admitted that the sciences are none of them separately evolved—are none of them independent either logically or historically; but that all of them have, in a greater or less degree, required aid and reciprocated it. Indeed, it needs but to throw aside hypotheses, and contemplate the mixed character of surrounding phenomena, to see at once that these notions of division and succession in the kinds of knowledge are simply scientific fictions: good, if regarded merely as aids to study; bad, if regarded as representing realities in Nature. No facts whatever are presented to our senses uncombined with other facts—no facts whatever but are in some degree disguised by accompanying facts: disguised in such a manner that all must be partially understood before any one can be understood. If it be said, as by M. Comte, that gravitating force should be treated of before other forces, seeing that all things are subject to it, it may on like grounds be said that heat should be first dealt with; seeing that thermal forces are everywhere in action. Nay more, it may be urged that the ability of any portion of matter to manifest visible gravitative phenomena depends on its state of aggregation, which is determined by heat; that only by the aid of thermology can we explain those apparent exceptions to {66} the gravitating tendency which are presented by steam and smoke, and so establish its universality; and that, indeed, the very existence of the Solar System in a solid form is just as much a question of heat as it is one of gravitation. Take other cases:—All phenomena recognized by the eyes, through which only are the data of exact science ascertainable, are complicated with optical phenomena, and cannot be exhaustively known until optical principles are known. The burning of a candle cannot be explained without involving chemistry, mechanics, thermology. Every wind that blows is determined by influences partly solar, partly lunar, partly hygrometric; and implies considerations of fluid equilibrium and physical geography. The direction, dip, and variations of the magnetic needle, are facts half terrestrial, half celestial—are caused by earthly forces which have cycles of change corresponding with astronomical periods. The flowing of the gulf-stream and the annual migration of icebergs towards the equator, involve in their explanation the Earth’s rotation and spheroidal form, the laws of hydrostatics, the relative densities of cold and warm water, and the doctrines of evaporation. It is no doubt true, as M. Comte says, that “our position in the Solar System, and the motions, form, size, and equilibrium of the mass of our world among the planets, must be known before we can understand the phenomena going on at its surface.” But, fatally for his hypothesis, it is also true that we must understand a great part of the phenomena going on at its surface before we can know its position, &c., in the Solar System. It is not simply that, as already shown, those geometrical and mechanical principles by which celestial appearances are explained, were first generalized from terrestrial experiences; but it is that even the obtainment of correct data on which to base astronomical generalizations, implies advanced terrestrial physics. Until after optics had made considerable advance, the Copernican {67} system remained but a speculation. A single modern observation on a star has to undergo a careful analysis by the combined aid of various sciences—has to be digested by the organism of the sciences; which have severally to assimilate their respective parts of the observation, before the essential fact it contains is available for the further development of astronomy. It has to be corrected not only for nutation of the Earth’s axis and for precession of the equinoxes, but for aberration and for refraction; and the formation of the tables by which refraction is calculated, presupposes knowledge of the law of decreasing density in the upper atmospheric strata, of the law of decreasing temperature and the influence of this on the density, and of hygrometric laws as also affecting density. So that, to get materials for further advance, astronomy requires not only the indirect aid of the sciences which have presided over the making of its improved instruments, but the direct aid of an advanced optics, of barology, of thermology, of hygrometry; and if we remember that these delicate observations are in some cases registered electrically, and that they are further corrected for the “personal equation”—the time elapsing between seeing and registering, which differs with different observers—we may even add electricity and psychology. And here, before leaving these illustrations, and especially this last one, let us not omit to notice how well they exhibit that increasingly active consensus of the sciences which characterizes their advancing development. Besides finding that in these later times a discovery in one science commonly causes progress in others; besides finding that a great part of the questions with which modern science deals are so mixed as to require the co-operation of many sciences for their solution; we find that, to make a single good observation in the purest of the natural sciences, requires the combined aid of half a dozen other sciences.