As already shown, the first theorem established in mechanics was, that equal weights suspended from a lever with equal arms would remain in equilibrium. Archimedes discovered that a lever with unequal arms was in equilibrium when one weight was to its arm as the other arm to its weight; that is—when the numerical relation between one weight and its arm was equal to the numerical relation between the other arm and its weight.

The first advance made in hydrostatics, which we also owe to Archimedes, was the discovery that fluids press equally in all directions; and from this followed the solution of the problem of floating bodies: namely, that they are in equilibrium when the upward and downward pressures are equal.

In optics, again, the Greeks found that the angle of incidence is equal to the angle of reflection; and their knowledge reached no further than to such simple deductions from this as their geometry sufficed for. In harmonics they ascertained the fact that three strings of equal lengths would yield the octave, fifth and fourth, when strained by weights having certain definite ratios; and they did not progress much beyond this. In the one of which cases we see geometry used in elucidation of the laws of light; and in the other, geometry and arithmetic made to measure the phenomena of sound.

Did space permit, it would be desirable here to describe the state of the less advanced sciences—to point out how, while a few had thus reached the first stages of quantitative prevision, the rest were progressing in qualitative prevision—how some small generalizations were made respecting evaporation, and heat, and electricity, and magnetism, which, empirical as they were, did not in that respect differ from the first generalizations of every science—how the Greek physicians had made advances in physiology and pathology, which, considering the great imperfection of our present knowledge, are by no means to be despised—how zoology had been so far systematized by Aristotle, as, to some extent, enabled him from the presence of certain organs to predict the presence of others—how in Aristotle's Politics, there is some progress towards a scientific conception of social phenomena, and sundry previsions respecting them—and how in the state of the Greek societies, as well as in the writings of Greek philosophers, we may recognise not only an increasing clearness in that conception of equity on which the social science is based, but also some appreciation of the fact that social stability depends upon the maintenance of equitable regulations. We might dwell at length upon the causes which retarded the development of some of the sciences, as for example, chemistry: showing that relative complexity had nothing to do with it—that the oxidation of a piece of iron is a simpler phenomenon than the recurrence of eclipses, and the discovery of carbonic acid less difficult than that of the precession of the equinoxes—but that the relatively slow advance of chemical knowledge was due, partly to the fact that its phenomena were not daily thrust on men's notice as those of astronomy were; partly to the fact that Nature does not habitually supply the means, and suggest the modes of investigation, as in the sciences dealing with time, extension, and force; and partly to the fact that the great majority of the materials with which chemistry deals, instead of being ready to hand, are made known only by the arts in their slow growth; and partly to the fact that even when known, their chemical properties are not self-exhibited, but have to be sought out by experiment.

Merely indicating all these considerations, however, let us go on to contemplate the progress and mutual influence of the sciences in modern days; only parenthetically noticing how, on the revival of the scientific spirit, the successive stages achieved exhibit the dominance of the same law hitherto traced—how the primary idea in dynamics, a uniform force, was defined by Galileo to be a force which generates equal velocities in equal successive times—how the uniform action of gravity was first experimentally determined by showing that the time elapsing before a body thrown up, stopped, was equal to the time it took to fall—how the first fact in compound motion which Galileo ascertained was, that a body projected horizontally will have a uniform motion onwards and a uniformly accelerated motion downwards; that is, will describe equal horizontal spaces in equal times, compounded with equal vertical increments in equal times—how his discovery respecting the pendulum was, that its oscillations occupy equal intervals of time whatever their length—how the principle of virtual velocities which he established is, that in any machine the weights that balance each other, are reciprocally as their virtual velocities; that is, the relation of one set of weights to their velocities equals the relation of the other set of velocities to their weights;—and how thus his achievements consisted in showing the equalities of certain magnitudes and relations, whose equalities had not been previously recognised. When mechanics had reached the point to which Galileo brought it—when the simple laws of force had been disentangled from the friction and atmospheric resistance by which all their earthly manifestations are disguised—when progressing knowledge of physics had given a due insight into these disturbing causes—when, by an effort of abstraction, it was perceived that all motion would be uniform and rectilinear unless interfered with by external forces—and when the various consequences of this perception had been worked out; then it became possible, by the union of geometry and mechanics, to initiate physical astronomy. Geometry and mechanics having diverged from a common root in men's sensible experiences; having, with occasional inosculations, been separately developed, the one partly in connexion with astronomy, the other solely by analyzing terrestrial movements; now join in the investigations of Newton to create a true theory of the celestial motions. And here, also, we have to notice the important fact that, in the very process of being brought jointly to bear upon astronomical problems, they are themselves raised to a higher phase of development. For it was in dealing with the questions raised by celestial dynamics that the then incipient infinitesimal calculus was unfolded by Newton and his continental successors; and it was from inquiries into the mechanics of the solar system that the general theorems of mechanics contained in the "Principia,"—many of them of purely terrestrial application—took their rise. Thus, as in the case of Hipparchus, the presentation of a new order of concrete facts to be analyzed, led to the discovery of new abstract facts; and these abstract facts having been laid hold of, gave means of access to endless groups of concrete facts before incapable of quantitative treatment.

Meanwhile, physics had been carrying further that progress without which, as just shown, rational mechanics could not be disentangled. In hydrostatics, Stevinus had extended and applied the discovery of Archimedes. Torricelli had proved atmospheric pressure, "by showing that this pressure sustained different liquids at heights inversely proportional to their densities;" and Pascal "established the necessary diminution of this pressure at increasing heights in the atmosphere:" discoveries which in part reduced this branch of science to a quantitative form. Something had been done by Daniel Bernoulli towards the dynamics of fluids. The thermometer had been invented; and a number of small generalizations reached by it. Huyghens and Newton had made considerable progress in optics; Newton had approximately calculated the rate of transmission of sound; and the continental mathematicians had succeeded in determining some of the laws of sonorous vibrations. Magnetism and electricity had been considerably advanced by Gilbert. Chemistry had got as far as the mutual neutralization of acids and alkalies. And Leonardo da Vinci had advanced in geology to the conception of the deposition of marine strata as the origin of fossils. Our present purpose does not require that we should give particulars. All that it here concerns us to do is to illustrate the consensus subsisting in this stage of growth, and afterwards. Let as look at a few cases.

The theoretic law of the velocity of sound enunciated by Newton on purely mechanical considerations, was found wrong by one-sixth. The error remained unaccounted for until the time of Laplace, who, suspecting that the heat disengaged by the compression of the undulating strata of the air, gave additional elasticity, and so produced the difference, made the needful calculations and found he was right. Thus acoustics was arrested until thermology overtook and aided it. When Boyle and Marriot had discovered the relation between the density of gases and the pressures they are subject to; and when it thus became possible to calculate the rate of decreasing density in the upper parts of the atmosphere; it also became possible to make approximate tables of the atmospheric refraction of light. Thus optics, and with it astronomy, advanced with barology. After the discovery of atmospheric pressure had led to the invention of the air-pump by Otto Guericke; and after it had become known that evaporation increases in rapidity as atmospheric pressure decreases; it became possible for Leslie, by evaporation in a vacuum, to produce the greatest cold known; and so to extend our knowledge of thermology by showing that there is no zero within reach of our researches. When Fourier had determined the laws of conduction of heat, and when the Earth's temperature had been found to increase below the surface one degree in every forty yards, there were data for inferring the past condition of our globe; the vast period it has taken to cool down to its present state; and the immense age of the solar system—a purely astronomical consideration.

Chemistry having advanced sufficiently to supply the needful materials, and a physiological experiment having furnished the requisite hint, there came the discovery of galvanic electricity. Galvanism reacting on chemistry disclosed the metallic bases of the alkalies, and inaugurated the electro-chemical theory; in the hands of Oersted and Ampère it led to the laws of magnetic action; and by its aid Faraday has detected significant facts relative to the constitution of light. Brewster's discoveries respecting double refraction and dipolarization proved the essential truth of the classification of crystalline forms according to the number of axes, by showing that the molecular constitution depends upon the axes. In these and in numerous other cases, the mutual influence of the sciences has been quite independent of any supposed hierarchical order. Often, too, their inter-actions are more complex than as thus instanced—involve more sciences than two. One illustration of this must suffice. We quote it in full from the History of the Inductive Sciences. In Book XI., chap. II., on "The Progress of the Electrical Theory," Dr. Whewell writes:—

"Thus at that period, mathematics was behind experiment, and a problem was proposed, in which theoretical results were wanted for comparison with observation, but could not be accurately obtained; as was the case in astronomy also, till the time of the approximate solution of the problem of three bodies, and the consequent formation of the tables of the moon and planets, on the theory of universal gravitation. After some time, electrical theory was relieved from this reproach, mainly in consequence of the progress which astronomy had occasioned in pure mathematics. About 1801 there appeared in the Bulletin des Sciences, an exact solution of the problem of the distribution of electric fluid on a spheroid, obtained by Biot, by the application of the peculiar methods which Laplace had invented for the problem of the figure of the planets. And, in 1811, M. Poisson applied Laplace's artifices to the case of two spheres acting upon one another in contact, a case to which many of Coulomb's experiments were referrible; and the agreement of the results of theory and observation, thus extricated from Coulomb's numbers obtained above forty years previously, was very striking and convincing."

Not only do the sciences affect each other after this direct manner, but they affect each other indirectly. Where there is no dependence, there is yet analogy—equality of relations; and the discovery of the relations subsisting among one set of phenomena, constantly suggests a search for the same relations among another set. Thus the established fact that the force of gravitation varies inversely as the square of the distance, being recognized as a necessary characteristic of all influences proceeding from a centre, raised the suspicion that heat and light follow the same law; which proved to be the case—a suspicion and a confirmation which were repeated in respect to the electric and magnetic forces. Thus again the discovery of the polarization of light led to experiments which ended in the discovery of the polarization of heat—a discovery that could never have been made without the antecedent one. Thus, too, the known refrangibility of light and heat lately produced the inquiry whether sound also is not refrangible; which on trial it turns out to be.