But now supposing the broad conclusion above drawn to be granted—supposing all to agree that from the beginning, along with inheritance of useful variations fortuitously arising, there has been inheritance of effects produced by use and disuse; do there remain no classes of organic phenomena unaccounted for? To this question I think it must be replied that there do remain classes of organic phenomena unaccounted for. It may, I believe, be shown that certain cardinal traits of animals and plants at large are still unexplained; and that a further factor must be recognized. To show this, however, will require another paper.


[1]. It is probable that this shortening has resulted not directly but indirectly, from the selection of individuals which were noted for tenacity of hold; for the bull-dog's peculiarity in this respect seems due to relative shortness of the upper jaw, giving the underhung structure which, involving retreat of the nostrils, enables the dog to continue breathing while holding.

II.

Ask a plumber who is repairing your pump, how the water is raised in it, and he replies—“By suction.” Recalling the ability which he has to suck up water into his mouth through a tube, he is certain that he understands the pump's action. To inquire what he means by suction, seems to him absurd. He says you know as well as he does, what he means; and he cannot see that there is any need for asking how it happens that the water rises in the tube when he strains his mouth in a particular way. To the question why the pump, acting by suction, will not make the water rise above 32 feet, and practically not so much, he can give no answer; but this does not shake his confidence in his explanation.

On the other hand an inquirer who insists on knowing what suction is, may obtain from the physicist answers which give him clear ideas, not only about it but about many other things. He learns that on ourselves and all things around, there is an atmospheric pressure amounting to about 15 pounds on the square inch: 15 pounds being the average weight of a column of air having a square inch for its base and extending upwards from the sea-level to the limit of the Earth's atmosphere. He is made to observe that when he puts one end of a tube into water and the other end into his mouth, and then draws back his tongue, so leaving a vacant space, two things happen. One is that the pressure of air outside his cheeks, no longer balanced by an equal pressure of air inside, thrusts his cheeks inwards; and the other is that the pressure of air on the surface of the water, no longer balanced by an equal pressure of air within the tube and his mouth (into which part of the air from the tube has gone) the water is forced up the tube in consequence of the unequal pressure. Once understanding thus the nature of the so-called suction, he sees how it happens that when the plunger of the pump is raised and relieves from atmospheric pressure the water below it, the atmospheric pressure on the water in the well, not being balanced by that on the water in the tube, forces the water higher up the tube, so that it follows the plunger. And now he sees why the water cannot be raised beyond the theoretic limit of 32 feet: a limit made much lower in practice by imperfections in the apparatus. For if, simplifying the conception, he supposes the tube of the pump to be a square inch in section, then the atmospheric pressure of 15 pounds per square inch on the water in the well, can raise the water in the tube to such height only that the entire column of it weighs 15 pounds. Having been thus enlightened about the pump's action, the action of a barometer becomes intelligible. He perceives how, under the conditions established, the weight of the column of mercury balances that of an atmospheric column of equal diameter; and how, as the weight of the atmospheric column varies, there is a corresponding variation in the weight of the mercurial column,—shown by change of height. Moreover, having previously supposed that he understood the ascent of a balloon when he ascribed it to relative lightness, he now sees that he did not truly understand it. For he did not recognize it as a result of that upward pressure caused by the difference between the weight of the mass formed by the gas in the balloon plus the cylindrical column of air extending above it to the limit of the atmosphere, and the weight of a similar cylindrical column of air extending down to the under surface of the balloon: this difference of weight causing an equivalent upward pressure on the under surface.

Why do I introduce these familiar truths so entirely irrelevant to my subject? I do it to show, in the first place, the contrast between a vague conception of a cause and a distinct conception of it; or rather, the contrast between that conception of a cause which results when it is simply classed with some other or others which familiarity makes us think we understand, and that conception of a cause which results when it is represented in terms of definite physical forces admitting of measurement. And I do it to show, in the second place, that when we insist on resolving a verbally-intelligible cause into its actual factors, we get not only a clear solution of the problem before us, but we find that the way is opened to solutions of sundry other problems. While we rest satisfied with unanalyzed causes, we may be sure both that we do not rightly comprehend the production of the particular effects ascribed to them, and that we overlook other effects which would be revealed to us by contemplation of the causes as analyzed. Especially must this be so where the causation is complex. Hence we may infer that the phenomena presented by the development of species, are not likely to be truly conceived unless we keep in view the concrete agencies at work. Let us look closely at the facts to be dealt with.


The growth of a thing is effected by the joint operation of certain forces on certain materials; and when it dwindles, there is either a lack of some materials, or the forces co-operate in a way different from that which produces growth. If a structure has varied, the implication is that the processes which built it up were made unlike the parallel processes in other cases, by the greater or less amount of some one or more of the matters or actions concerned. Where there is unusual fertility, the play of vital activities is thereby shown to have deviated from the ordinary play of vital activities; and conversely, if there is infertility. If the germs, or ova, or seed, or offspring partially developed, survive more or survive less, it is either because their molar or molecular structures are unlike the average ones, or because they are affected in unlike ways by surrounding agencies. When life is prolonged, the fact implies that the combination of actions, visible and invisible, constituting life, retains its equilibrium longer than usual in presence of environing forces which tend to destroy its equilibrium. That is to say, growth, variation, survival, death, if they are to be reduced to the forms in which physical science can recognize them, must be expressed as effects of agencies definitely conceived—mechanical forces, light, heat, chemical affinity, &c.

This general conclusion brings with it the thought that the phrases employed in discussing organic evolution, though convenient and indeed needful, are liable to mislead us by veiling the actual agencies. That which really goes on in every organism is the working together of component parts in ways conducing to the continuance of their combined actions, in presence of things and actions outside; some of which tend to subserve, and others to destroy, the combination. The matters and forces in these two groups, are the sole causes properly so called. The words “natural selection,” do not express a cause in the physical sense. They express a mode of co-operation among causes—or rather, to speak strictly, they express an effect of this mode of co-operation. The idea they convey seems perfectly intelligible. Natural selection having been compared with artificial selection, and the analogy pointed out, there apparently remains no indefiniteness: the inconvenience being, however, that the definiteness is of a wrong kind. The tacitly implied Nature which selects, is not an embodied agency analogous to the man who selects artificially; and the selection is not the picking out of an individual fixed on, but the overthrowing of many individuals by agencies which one successfully resists, and hence continues to live and multiply. Mr. Darwin was conscious of these misleading implications. In the introduction to his Animals and Plants under Domestication (p. 6) he says:—