In its simplest and most unmistakable form, we see this in the early changes of an unfolding ovum of primitive type. The original fertilized single cell, having by spontaneous fission multiplied into a cluster of such cells, there begins to show itself a contrast between periphery and centre; and presently there is formed a sphere consisting of a superficial layer unlike its contents. The first change, then, is the rise of a difference between that outer part which holds direct converse with the surrounding medium, and that inclosed part which does not. This primary differentiation in these compound embryos of higher animals, parallels the primary differentiation undergone by the simplest living things.

Leaving, for the present, succeeding changes of the compound embryo, the significance of which we shall have to consider by-and-by, let us pass now to the adult forms of visible plants and animals. In them we find cardinal traits which, after what we have seen above, will further impress us with the importance of the effects wrought on the organism by its medium.

From the thallus of a sea-weed up to the leaf of a highly developed phænogam, we find, at all stages, a contrast between the inner and outer parts of these flattened masses of tissue. In the higher Algæ “the outermost layers consist of smaller and firmer cells, while the inner cells are often very large, and sometimes extremely long;”[[11]] and in the leaves of trees the epidermal layer, besides differing in the sizes and shapes of its component cells from the parenchyma forming the inner substance of the leaf, is itself differentiated by having a continuous cuticle, and by having the outer walls of its cells unlike the inner walls.[[12]] Especially significant is the structure of such intermediate types as the Liverworts. Beyond the differentiation of the covering cells from the contained cells, and the contrast between upper surface and under surface, the frond of Marchantia polymorpha clearly shows us the direct effect of incident forces; and shows us, too, how it is involved with the effect of inherited proclivities. The frond grows from a flat disc-shaped gemma, the two sides of which are alike. Either side may fall uppermost; and then of the developing shoot, the side exposed to the light “is under all circumstances the upper side which forms stomata, the dark side becomes the under side which produces root-hairs and leafy processes.”[[13]] So that while we have undeniable proof that the contrasted influences of the medium on the two sides, initiate the differentiation, we have also proof that the completion of it is determined by the transmitted structure of the type; since it is impossible to ascribe the development of stomata to the direct action of air and light. On turning from foliar expansions, to stems and roots, facts of like meaning meet us. Speaking generally of epidermal tissue and inner tissue, Sachs remarks that “the contrast of the two is the plainer the more the part of the plant concerned is exposed to air and light.”[[14]] Elsewhere, in correspondence with this, it is said that in roots the cells of the epidermis, though distinguished by bearing hairs, “are otherwise similar to those of the fundamental tissue” which they clothe,[[15]] while the cuticular covering is relatively thin; whereas in stems the epidermis (often further differentiated) is composed of layers of cells which are smaller and thicker-walled: a stronger contrast of structure corresponding to a stronger contrast of conditions. By way of meeting the suggestion that these respective differences are wholly due to the natural selection of favourable variations, it will suffice if I draw attention to the unlikeness between imbedded roots and exposed roots. While in darkness, and surrounded by moist earth, the outermost protective coats, even of large roots, are comparatively thin; but when the accidents of growth entail permanent exposure to light and air, roots acquire coverings allied in character to the coverings of branches. That the action of the medium causes these and converse changes, cannot be doubted when we find, on the one hand, that “roots can become directly transformed into leaf-bearing shoots,” and, on the other hand, that in some plants certain “apparent roots are only underground shoots,” and that nevertheless “they are similar to true roots in function and in the formation of tissue, but have no root-cap, and, when they come to the light above ground, continue to grow in the manner of ordinary leaf-shoots.”[[16]] If, then, in highly developed plants inheriting pronounced structures, this differentiating influence of the medium is so marked, it must have been all-important at the outset while types were undetermined.

As with plants so with animals, we find good reason for inferring that while the specialities of the tegumentary parts must be ascribed to the natural selection of favourable variations, their most general traits are due to the direct action of surrounding agencies. Here we come upon the border of those changes which are ascribable to use and disuse. But from this class of changes we may fitly exclude those in which the parts concerned are wholly or mainly passive. A corn and a blister will conveniently serve to illustrate the way in which certain outer actions initiate in the superficial tissues, effects of very marked kinds, which are related neither to the needs of the organism nor to its normal structure. They are neither adaptive changes nor changes towards completion of the type. After noting them we may pass to allied, but still more instructive, changes. Continuous pressure on any portion of the surface causes absorption, while intermittent pressure causes growth: the one impeding circulation and the passage of plasma from the capillaries into the tissues, and the other aiding both. There are yet further mechanically-produced effects. That the general character of the ribbed skin on the under surfaces of the feet and insides of the hands is directly due to friction and intermittent pressure, we have the proofs:—first, that the tracts most exposed to rough usage are the most ribbed; second, that the insides of hands subject to unusual amounts of rough usage, as those of sailors, are strongly ribbed all over; and third, that in hands which are very little used, the parts commonly ribbed become quite smooth. These several kinds of evidence, however, full of meaning as they are, I give simply to prepare the way for evidence of a much more conclusive kind.

Where a wide ulcer has eaten away the deep-seated layer out of which the epidermis grows, or where this layer has been destroyed by an extensive burn, the process of healing is very significant. From the subjacent tissues, which in the normal order have no concern with outward growth, there is produced a new skin, or rather a pro-skin; for this substituted outward-growing layer contains no hair-follicles or other specialities of the original one. Nevertheless, it is like the original one in so far that it is a continually renewed protective covering. Doubtless it may be contended that this make-shift skin results from the inherited proclivity of the type—the tendency to complete afresh the structure of the species when injured. We cannot, however, ignore the immediate influence of the medium, on recalling the facts above named, or on remembering the further fact that an inflamed surface of skin, when not sheltered from the air, will throw out a film of coagulable lymph. But that the direct action of the medium is a chief factor we are clearly shown by another case. Accident or disease occasionally causes permanent eversion, or protrusion, of mucous membrane. After a period of irritability, great at first but decreasing as the change advances, this membrane assumes the general character of ordinary skin. Nor is this all: its microscopic structure changes. Where it is a mucous membrane of the kind covered by cylinder-epithelium, the cylinders gradually shorten, becoming finally flat, and there results a squamous epithelium: there is a near approach in minute composition to epidermis. Here a tendency towards completion of the type cannot be alleged; for there is, contrariwise, divergence from the type. The effect of the medium is so great that, in a short time, it overcomes the inherited proclivity and produces a structure of opposite kind to the normal one.

With but little break we come here upon a significant analogy, parallel to an analogy already described. As was pointed out, an inorganic body that is modifiable by its medium, acquires, after a time, an outer coat which has already undergone such change as surrounding agencies can effect; has a contained mass which is as yet unchanged, because unreached; and has a surface between the two where change is going on—a region of activity. And we saw that alike in the vegetal cell and the animal cell there exist analogous distributions: of course with the difference that the innermost part is not inert. Now we have to note that in those aggregates of cells constituting the Metaphyta and Metazoa, analogous distributions also exist. In plants they are of course not to be looked for in leaves and other deciduous portions, but only in portions of long duration—stems and branches. Naturally, too, we need not expect them in plants having modes of growth which early produce an outer practically dead part, that effectually shields the inner actively living part of the stem from the influence of the medium—long-lived acrogens such as tree-ferns and long-lived endogens such as palms. But in the highest plants, exogens, which have the actively living part of their stems within reach of environing agencies, we find this part,—the cambium layer,—is one from which there is a growth inwards forming wood, and a growth outwards forming bark: there is an increasingly thick covering (where it does not scale off) of tissue changed by the medium, and inside this a film of highest vitality. In so far as concerns the present argument, it is the same with the Metazoa, or at least all of them which have developed organizations. The outer skin grows up from a limiting plane, or layer, a little distance below the surface—a place of predominant vital activity. Here perpetually arise new cells, which, as they develop, are thrust outwards and form the epidermis: flattening and drying up as they approach the surface, whence, having for a time served to shield the parts below, they finally scale off and leave younger ones to take their places. This still undifferentiated tissue forming the base of the epidermis, and existing also as a source of renewal in internal organs, is the essentially living substance; and facts above given imply that it was the action of the medium on this essentially living substance, which, during early stages in the organization of the Metazoa, initiated that protective envelope which presently became an inherited structure—a structure which, though now mainly inherited, still continues to be modifiable by its initiator.

Fully to perceive the way in which these evidences compel us to recognize the influence of the medium as a primordial factor, we need but conceive them as interpreted without it. Suppose, for instance, we say that the structure of the epidermis is wholly determined by the natural selection of favourable variations; what must be the position taken in presence of the fact above named, that when mucous membrane is exposed to the air its cell-structure changes into the cell-structure of skin? The position taken must be this:—Though mucous membrane in a highly-evolved individual organism, thus shows the powerful effect of the medium on its surface; yet we must not suppose that the medium had the effect of producing such a cell-structure on the surfaces of primitive forms, undifferentiated though they were; or, if we suppose that such an effect was produced on them, we must not suppose that it was inheritable. Contrariwise, we must suppose that such effect of the medium either was not wrought at all, or that it was evanescent: though repeated through millions upon millions of generations it left no traces. And we must conclude that this skin-structure arose only in consequence of spontaneous variations not physically initiated (though like those physically initiated) which natural selection laid hold of and increased. Does any one think this a tenable position?


And now we approach the last and chief series of morphological phenomena which must be ascribed to the direct action of environing matters and forces. These are presented to us when we study the early stages in the development of the embryos of the Metazoa in general.

We will set out with the fact already noted in passing, that after repeated spontaneous fissions have changed the original fertilized germ-cell into that cluster of cells which forms a gemmule or a primitive ovum, the first contrast which arises is between the peripheral parts and the central parts. Where, as with lower creatures which do not lay up large stores of nutriment with the germs of their offspring, the inner mass is inconsiderable, the outer layer of cells, which are presently made quite small by repeated subdivisions, forms a membrane extending over the whole surface—the blastoderm. The next stage of development, which ends in this covering layer becoming double, is reached in two ways—by invagination and by delamination; but which is the original way and which the abridged way, is not quite certain. Of invagination, multitudinously exemplified in the lowest types, Mr. Balfour says:—“On purely à priori grounds there is in my opinion more to be said for invagination than for any other view”;[[17]] and, for present purposes, it will suffice if we limit ourselves to this: making its nature clear to the general reader by a simple illustration.