Leaving out, however, the imaginary factors of evolution which these speculations allege, and looking only at the one actual factor which Dr. Darwin and Lamarck assign as accounting for some of the phenomena; it is manifest, from our present stand-point, that this, so far as it is a cause of evolution, is a proximate cause and not an ultimate cause. To say that functionally-produced adaptation to conditions originates either evolution in general, or the irregularities of evolution, is to raise the further question—why is there a functionally-produced adaptation to conditions?—why do use and disuse generate appropriate changes of structure? Neither this nor any other interpretation of biologic evolution which rests simply on the basis of biologic induction, is an ultimate interpretation. The biologic induction must itself be interpreted. Only when the process of evolution of organisms is affiliated on the process of evolution in general, can it be truly said to be explained. The thing required is to show that its various results are corollaries from first principles. We have to reconcile the facts with the universal laws of the re-distribution of matter and motion.

CHAPTER IX.

EXTERNAL FACTORS.

§ 148. When illustrating the rhythm of motion (First Principles, § 83) it was pointed out that besides the daily and annual alternations in the quantities of light and heat which any portion of the Earth's surface receives from the Sun, there are alternations which require immensely-greater periods to complete. Reference was made to the fact that "every planet, during a certain long period, presents more of its northern than of its southern hemisphere to the Sun at the time of its nearest approach to him; and then again, during a like period, presents more of its southern hemisphere than of its northern—a recurring coincidence which, though it causes in some planets no sensible alterations of climate, involves, in the case of the Earth, an epoch of 21,000 years during which each hemisphere goes through a cycle of temperate seasons, and seasons that are extreme in their heat and cold." Further, we saw that there is a variation of this variation. The slow rhythm of temperate and intemperate climates, which takes 21,000 years to complete itself, undergoes exaggeration and mitigation during epochs that are far longer. The Earth's orbit slowly alters in form: now approximating to a circle, and now becoming more eccentric. During the period in which the Earth's orbit has least eccentricity, the temperate and intemperate climates which repeat their cycle in 21,000 years, are severally less temperate and less intemperate, than when, some one or two millions of years later, the Earth's orbit has reached its extreme of eccentricity.

Thus, besides those daily variations in the quantities of light and heat received by organisms, and responded to by variations in their functions; and besides the annual variations in the quantities of light and heat which organisms receive, and similarly respond to by variations in their functions; there are variations that severally complete themselves in 21,000 years and in some millions of years—variations to which there must also be responses in the changed functions of organisms. The whole vegetal and animal kingdoms, are subject to quadruply-compounded rhythms in the incidence of the forces on which life primarily depends—rhythms so involved in their slow working round that at no time during one of these vast epochs, can the incidence of these various forces be exactly the same as at any other time. To the direct effects so produced on organisms, have to be added much more important indirect effects. Changes of distribution must result. Certain redistributions are occasioned even by the annual variations in the quantities of the solar rays received by each part of the Earth's surface. The migrations of birds thus caused are familiar. So, too, are the migrations of certain fishes: in some cases from one part of the sea to another; in some cases from salt water to fresh water; and in some cases from fresh water to salt water. Now just as the yearly changes in the amounts of light and heat falling on each locality, yearly extend and restrict the habitats of many organisms which are able to move about with some rapidity; so must the alterations of temperate and intemperate climates produce extensions and restrictions of habitats. These, though slow, must be universal—must affect the habitats of stationary organisms as well as those of locomotive ones. For if, during an astronomic era, there is going on at any limit to a plant's habitat, a diminution of the winter's cold or summer's heat, which had before stopped its spread at that limit; then, though the individual plants are fixed, yet the species will move: the seeds of plants living at the limit, will produce individuals which survive beyond the limit. The gradual spread so effected, having gone on for some ten thousand years, the opposite change of climate will begin to cause retreat. The tide of each species will, during one half of a long epoch, slowly flow into new regions, and then will slowly ebb away from them. Further, this rise and fall in the tide of each species will, during far longer intervals, undergo increasing rises and falls and then decreasing rises and falls. There will be an alteration of spring tides and neap tides, answering to the changing eccentricity of the Earth's orbit.

These astronomical rhythms, therefore, entail on organisms unceasing changes in the incidence of forces in two ways. They directly subject them to variations of solar influences, in such a manner that each generation is somewhat differently affected in its functions; and they indirectly bring about complicated alterations in the environing agencies, by carrying each species into the presence of new physical conditions, new soil and surface.

§ 149. The power of geological actions to modify everywhere the circumstances in which plants and animals are placed, is conspicuous. In each locality denudation slowly uncovers different deposits, and slowly changes the exposed areas of deposits already uncovered. Simultaneously, the alluvial beds in course of formation, are qualitatively affected by these progressive changes in the natures and proportions of the strata denuded. The inclinations of surfaces and their directions with respect to the Sun, are at the same time modified; and the organisms existing on them are thus having their thermal conditions continually altered, as well as their drainage. Igneous action, too, complicates these gradual modifications. A flat region cannot be step by step thrust up into a protuberance without unlike climatic changes being produced in its several parts, by their exposures to different aspects. Extrusions of trap, wherever they take place, revolutionize the localities; both over the areas covered and over the areas on to which their detritus is carried. And where volcanoes are formed, the ashes they occasionally send out modify the character of the soil throughout large surrounding tracts.

In like manner alterations in the Earth's crust cause the ocean to be ever subjecting the organisms it contains to new combinations of conditions. Here the water is being deepened by subsidence, and there shallowed by upheaval. While the falling upon it of sediment brought down by neighbouring large rivers, is raising the sea-bottom in one place, in another the habitual rush of the tide is carrying away the sediment deposited in past times. The mineral character of the submerged surface on which sea-weeds grow and molluscs crawl, is everywhere occasionally changed; now by the bringing away from an adjacent shore some previously untouched strata; and now by the accumulation of organic remains, such as the shells of pteropods or of foraminifera. A further series of alterations in the circumstances of marine organisms, is entailed by changes in the movements of the water. Each modification in the outlines of neighbouring shores makes the tidal streams vary their directions or velocities or both. And the local temperature is from time to time raised or lowered, because some far-distant change of form in the Earth's crust has wrought a divergence in those circulating currents of warm and cold water which pervade the ocean.

These geologically-caused changes in the physical characters of each environment, occur in ever-new combinations, and with ever-increasing complexity. As already shown (First Principles, § 158), it follows from the law of the multiplication of effects, that during long periods each tract of the Earth's surface increases in heterogeneity of both form and substance. So that plants and animals of all kinds are, in the course of generations, subjected by alterations in the crust of the Earth, to sets of incident forces differing from previous sets, both by changes in the proportions of the factors and, occasionally, by the addition of new factors.

§ 150. Variations in the astronomical conditions joined with variations in the geological conditions, bring about variations in the meteorological conditions. Those slow alternations of elevation and subsidence which take place over immense areas, here producing a continent where once there was a fathomless ocean, and there causing wide seas to spread where in a long past epoch there stood snow-capped mountains, gradually work great atmospheric changes. While the highest parts of an emerging surface of the Earth's crust exist as a cluster of islands, the plants and animals which in course of time migrate to them have climates that are peculiar to small tracts of land surrounded by large tracts of water. As, by successive upheavals, greater areas are exposed, there begin to arise sensible contrasts between the states of their peripheral parts and their central parts. The breezes which daily moderate the extremes of temperature near the shores, cease to affect the interiors; and the interiors, less qualified too in their heat and cold by such ocean-currents as approach the coast, acquire more decidedly the characters due to their latitudes. Along with the further elevations which unite the members of the archipelago into a continent, there come new meteorologic changes, as well as exacerbations of the old. The winds, which were comparatively uniform in their directions and periods when only islands existed, grow involved in their distribution, and widely-different in different parts of the continent. The quantities of rain which they discharge and of moisture which they absorb, vary everywhere according to the proximity to the sea and to surfaces of land having special characters.