There remains the question—What general views are we to take respecting the vertebrate structure? If the hypothesis of an “ideal typical vertebra” is not justified by the facts, how are we to understand that degree of similarity which vertebræ display?

We believe the explanation is not far to seek. All that our space will here allow, is a brief indication of what seems to us the natural view of the matter.

Professor Owen, in common with other comparative anatomists, regards the divergences of individual vertebræ from the average form, as due to adaptive modifications. If here one vertebral element is largely developed, while elsewhere it is small—if now the form, now the position, now the degree of coalescence, of a given part varies; it is that the local requirements have involved this change. The entire teaching of comparative osteology implies that differences in the conditions of the respective vertebræ necessitate differences in their structures.

Now, it seems to us that the first step towards a right conception of the phenomena, is to recognize this general law in its converse application. If vertebræ are unlike in proportion to the unlikeness of their circumstances, then, by implication, they will be like in proportion to the likeness of their circumstances. While successive segments of the same skeleton, and of different skeletons, are all in some respects more or less differently acted on by incident forces, and are therefore required to be more or less different; they are all, in other respects, similarly acted on by incident forces, and are therefore required to be more or less similar. It is impossible to deny that if differences in the mechanical functions of the vertebræ involve differences in their forms; then, community in their mechanical functions, must involve community in their forms. And as we know that throughout the Vertebrata generally, and in each vertebrate animal, the vertebræ, amid all their varying circumstances, have a certain community of function, it follows necessarily that they will have a certain general resemblance—there will recur that average shape which has suggested the notion of a pattern-vertebra.

A glance at the facts at once shows their harmony with this conclusion. In an eel or a snake, where the bodily actions are such as to involve great homogeneity in the mechanical conditions of the vertebræ, the series of them is comparatively homogeneous. On the contrary, in a mammal or a bird, where there is considerable heterogeneity in their circumstances, their similarity is no longer so great. And if, instead of comparing the vertebral columns of different animals, we compare the successive vertebræ of any one animal, we recognize the same law. In the segments of an individual spine, where is there the greatest divergence from the common mechanical conditions? and where may we therefore expect to find the widest departure from the average form? Obviously at the two extremities. And accordingly it is at the two extremities that the ordinary structure is lost.

Still clearer becomes the truth of this view, when we consider the genesis of the vertebral column as displayed throughout the ascending grades of the Vertebrata. In its first embryonic stage, the spine is an undivided column of flexible substance. In the early fishes, while some of the peripheral elements of the vertebræ were marked out, the central axis was still a continuous unossified cord. And thus we have good reason for thinking that in the primitive vertebrate animal, as in the existing Amphioxus, the notochord was persistent. The production of a higher, more powerful, more active creature of the same type, by whatever method it is conceived to have taken place, involved a change in the notochordal structure. Greater muscular endowments presupposed a firmer internal fulcrum —a less yielding central axis. On the other hand, for the central axis to have become firmer while remaining continuous, would have entailed a stiffness incompatible with the creature’s movements. Hence, increasing density of the central axis necessarily went hand in hand with its segmentation: for strength, ossification was required; for flexibility, division into parts. The production of vertebræ resulting thus, there obviously would arise among them a general likeness, due to the similarity in their mechanical conditions, and more especially the muscular forces bearing on them. And then observe, lastly, that where, as in the head, the terminal position and the less space for development of muscles, entailed smaller lateral bendings, the segmentation would naturally be less decided, less regular, and would be lost as we approached the front of the head.

But, it may be replied, this hypothesis does not explain all the facts. It does not tell us why a bone whose function in a given animal requires it to be solid, is formed not of a single piece, but by the coalescence of several pieces, which in other creatures are separate; it does not account for the frequent manifestations of unity of plan in defiance of teleological requirements. This is quite true. But it is not true, as Professor Owen argues respecting such cases, that “if the principle of special adaptation fails to explain them, and we reject the idea that these correspondences are manifestations of some archetypal exemplar, on which it has pleased the Creator to frame certain of his living creatures, there remains only the alternative that the organic atoms have concurred fortuitously to produce such harmony.” This is not the only alternative: there is another, which Professor Owen has overlooked. It is a perfectly tenable supposition that all higher vertebrate forms have arisen by the superposing of adaptations upon adaptations. Either of the two antagonist cosmogonies consists with this supposition. If, on the one hand, we conceive species to have resulted from acts of special creation; then it is quite a fair assumption that to produce a higher vertebrate animal, the Creator did not begin afresh, but took a lower vertebrate animal, and so far modified its pre-existing parts as to fit them for the new requirements; in which case the original structure would show itself through the superposed modifications. If, on the other hand, we conceive species to have resulted by gradual differentiations under the influence of changed conditions; then, it would manifestly follow that the higher, heterogeneous forms, would bear traces of the lower and more homogeneous forms from which they were evolved.

Thus, besides finding that the hypothesis of an “ideal typical vertebra” is irreconcilable with the facts, we find that the facts are interpretable without gratuitous assumptions. The average community of form which vertebræ display, is explicable as resulting from natural causes. And those typical similarities which are traceable under adaptive modifications, must obviously exist if, throughout creation in general, there has gone on that continuous superposing of modifications upon modifications which goes on in every unfolding organism.