But if in these cases the differentiations which fit particular parts of the outer tissues to bear rough usage are caused mainly by the direct balancing of external actions by internal reactions, then we may suspect that the like is true of other modifications that occur where special strains and abrasions have to be met. Possibly it is true of sundry parts that are formed of hardened epidermis, such as the nails, claws, hoofs, and hollow horns of Mammals; “all of which,” says Prof. Huxley, “are constructed on essentially the same plan, being diverticula of the whole integument, the outer layer of whose ecderon has undergone horny metamorphosis.” Leaving open, however, the question what tegumentary structures are due to direct equilibration, furthered and controlled by indirect equilibration, it is tolerably clear that direct equilibration has been one of the factors.

§ 294. Dermal structures of another class are developed mainly, if not wholly, by the actions of external causes on species rather than on individuals. These are the various kinds of clothing—hairs, feathers, quills, scales, scutes. Though it is no longer thought as at one time that all these various tegumentary structures are homologous with one another, yet it is unquestionable that sundry of the more conspicuous ones are. Those which are extremely unlike may be seen linked together by a long series of graduated forms. A retrograde metamorphosis from feathers to appendages that are almost scale-like, is well seen in the coat of the Penguin. There is manifest a transition from the bird-like covering to the fish-like covering—a transition so gradual that no place can be found where an appreciable break occurs; and if the scale-like appendages are not truly scales yet they exemplify an extreme metamorphosis. Less striking, perhaps, but scarcely less significant, are the modifications through which we pass from feathers to hairs, on the surfaces of the Ostrich and the Cassowary. The skin of the Porcupine shows us hairs and quills united by a series of intermediate structures, differing from one another inappreciably. Even more remarkable are certain other alliances of dermal structures. “It may be taken as certain, I think,” says Prof. Huxley, “that the scales, plates, and spines of all fishes are homologous organs; nor as less so that the tegumentary spines of the Plagiostomes are homologous with their teeth, and thence with the teeth of all vertebrata.”

Further details concerning these tegumentary structures are not needful for present purposes, and are indeed but indirectly relevant to the subject of physiological development. Here they are of interest to us only by involving the general question—What physical influences have brought them into existence? Still with a view to definite presentation of the problem, it will be well to contemplate the mode of development common to the most familiar of them.

Suppose a small pit to be formed on the previously flat skin; and suppose that the growth and casting off of horny cells which goes on over the skin in general, continues to go on at the usual rate over the depressed surface of this pit. Clearly the quantity of horny matter produced within this hollow, will be greater than that produced on a level portion of the skin subtending an equal area of the animal’s outside. Suppose such a pit to be deepened until it becomes a small sac. If the exfoliation goes on as before, the result will be that the horny matter, expelled, as it must be, through the mouth of the sac, which now bears a small proportion to the internal surface of the sac, will be large in quantity compared with that exfoliated from a portion of the skin equal in area to the mouth of the sac: there will be a conspicuous thrusting forth of horny matter. Suppose once more that the sac, instead of remaining simple, has its bottom pushed up into its interior, like the bottom of a wine-bottle—the introversion being carried so far that the introverted part reaches nearly to the external opening, and leaves scarcely any space between the introverted part and the walls of the sac. It is easy to see that the exfoliation continuing from the surface of the introverted part, as well as from the inside of the sac generally, the horny matter cast off will form a double layer; and will come out of the sac in the shape of a tube having within its lower end the introverted part, as the core on which it is moulded, and from the apex of which is cast off the substance filling, less densely, its interior. The structure resulting will be what we know as a hair. Manifestly by progressive enlargement of the sac, and further complication of that introverted part on which the excreted substance is moulded, the protruding growth may be rendered larger and more involved, as we see it in quills and feathers. So that insensible steps, thus indicated in principle, carry us from the exfoliation of epidermis by a flat surface, to the exfoliation of it by a hollow simple sac, an introverted sac, and a sac further complicated; each of which produces its modified kind of tegumentary appendage.

But now, after contemplating this typical illustration, we return to the general question. What are the agencies which have been operative in developing these skin-structures? Indirect equilibration must have worked almost alone in producing them. No direct incidence of forces can have developed the enamelled armour of the Lepidosteus or the tesselated plates of the Glyptodon and its modern allies. Survival of the fittest must here and in multitudinous other cases be regarded as the sole cause.

§ 295. Among many other differentiations of the outer tissues, the most worthy to be noticed in the space that remains, are those by which organs of sense are formed. We will begin with the simplest and most closely-allied to the foregoing.

Every hair that is not too long or flexible to convey to its rooted end a strain put upon its free end, is a rudimentary tactual organ; as may be readily proved by touching one of those growing on the back of the hand. If, then, a creature has certain hairs so placed that they are habitually touched by the objects with which it deals, or amid which it moves, an advantage is likely to accrue if these hairs are modified in a way that enables them the better to transmit the impressions derived. Such modified hairs we have in the vibrissæ, or, as they are commonly called, the “whiskers” possessed by Cats and feline animals generally, as well as by Seals and many Rodents. These hairs are long enough to reach objects at considerable distances; they are so stiff that forces applied to their free ends, cause movements of their imbedded ends; and the sacs containing their imbedded ends being well covered with nerve-fibres, these developed hairs serve as instruments of exploration. By constant use of them the animal learns to judge of the relative positions of objects past which, or towards which, it is moving. When stealthily approaching prey or stealthily escaping enemies, such aids to perception are obviously important: indeed their importance has been proved by the diminished power of self-guidance in the dark, that results from cutting them off. These, then, are dermal appendages originally serving the purpose of clothing, but afterwards differentiated into sense-organs.

That eyes are essentially dermal structures seems scarcely conceivable. Yet an examination of their rudimentary types, and of their genesis in creatures that have them well developed, shows us that they really arise by successive modifications of the double layer composing the integument. They make their first appearance among the simpler animals as specks of pigment, covered by portions of epidermis slightly convex and a little more transparent than that around it. Here their fundamental community of structure with the skin is easy to trace; and the formation of them by differentiation of it presents no difficulty. Not so far in advance of these as much to obscure the relationship, are the eyes which the Crustaceans possess. In every fishmonger’s shop we may see that the eyes of a Lobster are carried on pedicles; and when the Lobster casts its shell, the outer coat of each eye, being continuous with the epidermis of its pedicle, is thrown off along with the rest of the exo-skeleton. Beneath the transparent epidermic layer, there exists a group of eyes of the kind which we see in an insect; and these, according to a high authority, are inclosed in the dermal system. Describing the arrangement of the parts, M. Milne Edwards writes:—“But the most remarkable circumstance is, that the large cavity within which the whole of these parallel columns, every one of which is itself a perfect eye, are contained, is closed posteriorly by a membrane, which appears to be neither more nor less than the middle tegumentary membrane, pierced for the passage of the optic nerve; so that the ocular chamber at large results from the separation at a point of the two external layers of the general envelope.” Thus too is it, in the main, even with the highly developed eyes of the Vertebrata. “The three pairs of sensory organs appertaining to the higher senses,” says Prof. Huxley—“the nasal sacs, the eyes, and the ears—arise as simple cœcal involutions of the external integument of the head of the embryo. That such is the case, so far as the olfactory sacs are concerned, is obvious, and it is not difficult to observe that the lens and the anterior chamber of the eye are produced in a perfectly similar manner. It is not so easy to see that the labyrinth of the ear arises in this way, as the sac resulting from the involution of the integument is small, and remains open but a very short time. But I have so frequently verified Huschke’s and Remak’s statement that it does so arise, that I entertain no doubt whatever of the fact. The outer ends of the olfactory sacs remain open, but those of the ocular and auditory sacs rapidly close up, and shut off their contents from all direct communication with the exterior.” That is to say, the eye considered as an optical apparatus is produced by metamorphoses of the skin: the only parts of it not thus produced, being the membranes lying between the sclerotic and the vitreous humour, including those retinal structures formed in them. All is tegumentary save that which has to appreciate the impressions which the modified integument concentrates upon it.

Thus, as Prof. Huxley has somewhere pointed out, there is a substantial parallelism between all the sensory organs in their modes of development; as there is, too, between their modes of action. A vibrissa may be taken as their common type. Increased impressibility by an external stimulus, requires an increased peripheral expansion of the nervous system on which the stimulus may fall; and this is secured by an introversion of the integument, forming a sac on the walls of which a nerve may ramify. That the more extended sensory area thus constituted may be acted upon, there requires some apparatus conveying to it from without the appropriate stimulus; and in the case of the vibrissa, this apparatus is the epidermic growth which, under the form of a hair, protrudes from the sac. And that the greatest sensitiveness may be obtained, the external action must be exaggerated or multiplied by the apparatus which conveys it to the recipient nerve; as, in the case of the vibrissa, it is by the development of a hair into an elastic lever, that transforms the slight force acting through considerable space on its exposed end, into a greater force acting through a smaller space at its rooted end. Similarly with the organs of the higher senses. In a rudimentary eye, the slightly modified sense cell has but a rudimentary nerve to take cognizance of the impression; and to concentrate the impression upon it, there is nothing beyond a thickening of the epidermis into a lens-shape. But the developed eye shows us a termination of the nerve greatly expanded and divided to receive the external stimulus. It shows us an introverted portion of the integument containing the apparatus by which the external stimulus is conveyed to the recipient nerve. The structure developed in this sac not only conveys the stimulus, but also, like its homologue, concentrates it; and in the one case as in the other, the structure which does this is an epidermic growth from the bottom of the sac. Even with the ear it is the same. Again we have an introverted portion of the integument, on the walls of which the nerve is distributed in the primitive ear. The otolithes contained in the sac thus formed, are bodies which are set in motion by the vibrations of the surrounding water, and convey these vibrations in an exaggerated form to the nerves. And though it is not alleged that these otolithes are developed from the epidermic lining of the chamber, yet as, if not so developed, they are concretions from the contents of an epidermic sac, they must still be regarded as epidermic products.

Whether these differentiations are due wholly to indirect equilibration, or whether direct equilibration has had a share in working them, are questions that must be left open. Possibly a short hair so placed on a mammal’s face as to be very often touched, may, by conveying excitations to the nerves and vessels at its root, cause extra growth of the bulb and its appendages, and so the development of a vibrissa may be furthered. Possibly, too, the light itself, to which the tissues of some inferior animals are everywhere sensitive, may aid in setting up certain of the modifications by which the nervous parts of visual organs are formed: producing, as it must, the most powerful effects at those points on the surface which the movements of the animal expose to the greatest and most frequent contrasts of light and shade; and propagating from those points currents of molecular change through the organism. But it seems clear that the complexities of the sensory organs are not thus explicable. They must have arisen by the natural selection of favourable variations.