It will be well, too, if we pass over the lower animals: especially those aquatic ones which, being nearly of the same temperature as the water, and nearly of the same specific gravity, lose but little in evolving motion, sensible and insensible. A further reason for excluding from consideration these inferior types, is that we do not know enough of their rates of genesis to permit of our making, with any satisfaction, those involved comparisons here to be entered upon.
The facts on which we must mainly depend are those to be gathered from terrestrial animals, and chiefly from those higher classes of them which are at the same time great expenders and have rates of multiplication about which our knowledge is tolerably definite. We will restrict ourselves, then, to the evidence which Birds and Mammals supply.
§ 348. Satisfactory proof that loss of substance in the maintenance of heat diminishes the rapidity of propagation, is difficult to obtain. It is, indeed, obvious that the warmblooded Vertebrata are less prolific than the cold-blooded; but then they are at the same time more vivacious. Similarly, between Mammals and Birds (which are the warmer-blooded of the two) there is, other things equal, a parallel, though much smaller, difference; but here, too, the unlikenesses of muscular action complicate the evidence. Again, the annual return of generative activity has an average correspondence with the annual return of a warmer season, which, did it stand alone, might be taken as evidence that a diminished cost of heat-maintenance leads to such a surplus as makes reproduction possible. But then, this periodic rise of temperature is habitually accompanied by an increase in the quantity of food—a factor of equal or greater importance. We must be content, therefore, with such few special facts as admit of being disentangled.
Certain of these we are introduced to by the general relation last named—the habitual recurrence of genesis with the recurrence of spring. For in some cases a domesticated creature has its supplies of food almost equalized; and hence the effect of varying nutrition may be in great part eliminated from the comparison. The common Fowl yields an illustration. It is fed through the cold months, but nevertheless, in mid-winter, it either wholly leaves off laying or lays very sparingly. And then we have the further evidence that if it lays sparingly, it does so only on condition that the heat, as well as the food, is artificially maintained. Hens lay in cold weather only when they are kept warm. To which fact may be added the kindred one that “when pigeons receive artificial heat, they not only continue to hatch longer in autumn, but will recommence in spring sooner than they would otherwise do.” An analogous piece of evidence is that, in winter, inadequately sheltered Cows either cease to give milk or give it in diminished quantity. For though giving milk is not the same thing as bearing a young one, yet, as milk is part of the material from which a young one is built up, it is part of the outlay for reproductive purposes, and diminution of it is a loss of reproductive power. Indeed the case aptly illustrates, under another aspect, the struggle between self-preservation and race-preservation. Maintenance of the cow’s life depends on maintenance of its heat; and maintenance of its heat may entail such reduction in the supply of milk as to cause the death of the calf.
Evidence derived from the habits of the same or allied genera in different climates, may naturally be looked for; but it is difficult to get, and it can scarcely be expected that the remaining conditions of existence will be so far similar as to allow of a fair comparison being made. The only illustrative facts I have met with which seem noteworthy, are some named by Mr. Gould in his work on The Birds of Australia. He says:—“I must not omit to mention, too, the extraordinary fecundity which prevails in Australia, many of its smaller birds breeding three or four times in a season; but laying fewer eggs in the early spring when insect life is less developed, and a greater number later in the season, when the supply of insect food has become more abundant. I have also some reason to believe that the young of many species breed during the first season, for among others, I frequently found one section of the Honey-eaters (the Melithrepti) sitting upon eggs while still clothed in the brown dress of immaturity; and we know that such is the case with the introduced Gallinaceæ (or poultry) three or four generations of which have been often produced in the course of a year.” Though here Mr. Gould refers only to variation in the quantity of food as a cause of variation in the rate of multiplication, may we not suspect that warmth is a part-cause of the high rate which he describes as general?
§ 349. Of the inverse variation between activity and genesis, we get clear proof. Let us begin with that which Birds furnish.
First we have the average contrast, already hinted, between the fertility of Birds and the fertility of Mammals. Comparing the large with the large and the small with the small, we see that creatures which continually go through the muscular exertion of sustaining themselves in the air and propelling themselves rapidly through it, are less prolific than creatures of equal weights which go through the smaller exertion of moving about over solid surfaces. Predatory Birds have fewer young ones than predatory Mammals of approximately the same sizes. If we compare Rooks with Rats, or Finches with Mice, we find like differences. And these differences are greater than at first appears. For whereas among Mammals a mother is able, unaided, to bear and suckle and rear half-way to maturity, a brood that probably weighs more in proportion than does the brood of a Bird; a Bird, or at least a Bird that flies much, is unable to do this. Both parents have to help; and this indicates that the margin for reproduction in each adult individual is smaller.
Among Birds themselves occur contrasts which may be next considered. In the Raptorial class, various species of which, differing in their sizes, are similarly active in their habits, we see that the small are more prolific than the large. The Golden Eagle has usually 2 eggs: sometimes 3, sometimes only 1. As we descend to the Kites and Falcons, the number is 2 or 3, and 3 or 4. And when we come to the Sparrow-Hawk, 3 to 5 is the specified number. Similarly among the Owls: while the Great Eagle-Owl has 2 or 3 eggs, the comparatively small Common Owl has 4 or 5. As before hinted, it is impossible to say what proportions of these differences are due to unlikenesses of bulk merely, and what proportions are due to unlikenesses in the costs of locomotion. But we may fairly assume that the unlikenesses in the costs of locomotion are here the more important factors. Weights varying as the cubes of the dimensions, while the surfaces of digestive systems vary as the squares, the expense of flight increases more rapidly than does the ability to take in nutriment; and as motion through the air requires more effort than motion on the ground, this geometrical progression tells more rapidly on Birds than on Mammals. Be this as it may, however, these contrasts support the argument; as do various others which may be set down. The Finch-family, for example, have broods averaging about 5 in number, and have commonly 2 broods in the season; while in the Crow-family the number of the brood is on the average less, and there is but one brood in the season. And then on descending to such small birds as the Wrens and the Tits, we have 8, 10, 12 to 15 eggs, and sometimes two broods in the year. One of the best illustrations is furnished by the Swallow-tribe, throughout which there is little or no difference in mode of life or in food. The Sand-Martin, much the least of them, has 4 to 6 eggs and two broods; the Swallow, somewhat larger, has 4 or 5; and the Swift (similar in habits though unrelated), larger still, has but 2. Here we see a lower fertility associated in part with greater size, but associated still more conspicuously with greater expenditure. For the difference of fertility is more than proportionate to the difference of bulk, as shown in other cases; and for this greater difference there is the reason, that the Swift has to support not only the cost of propelling its larger mass through the air, but also the cost of propelling it at a higher velocity.
Omitting much evidence of like nature, let us note that disclosed by comparisons of certain groups of birds with other groups. “Skulkers” is the descriptive title applied to the Water-Rail, the Corn-Crake, and their allies, which evade enemies by concealment—consequently expending but little in locomotion. These birds have relatively large broods—6 to 11, 8 to 12, &c. Not less instructive are the contrasts between the Gallinaceous Birds and other Birds of like sizes but more active habits. The Partridge and the Wood-Pigeon are about equal in bulk and have much the same food. Yet while the one has from 12 to 20 young ones, the other has but 2 young ones twice a-year: its annual reproduction is less than one-third. It may be said that the ability of the Partridge to bring up so large a brood, is due to that habit of its tribe which one of its names, “Scrapers,” describes; and to the accompanying habit of the young, which begin to get their own living as soon as they are hatched: so saving the parents’ labour. Conversely, it may be said that the inability of Pigeons to rear more than 2 at a time, is caused by the necessity of fetching everything they eat. But the alleged relation holds nevertheless. On the one hand, a great part of the food which the Partridge chicks pick up, is food which, in their absence, the mother would have picked up. Though each chick costs her far less than a young Pigeon costs its parents, yet the whole of her chicks cost her a great deal in the shape of abstinence—an abstinence she can bear because she has to fly but little. On the other hand, the Pigeon’s habit of laying and hatching but two eggs, must not be referred to any foreseen necessity of going through so much labour in supporting the young, but to a constitutional tendency established by such labour. This is proved by the curious fact that when domesticated, and saved from such labour by artificial feeding, Pigeons, says Macgillivray (quoting Aitkin), “are frequently seen sitting on eggs long before the former brood is able to leave the nest, so that the parent bird has at the same time young birds and eggs to take care of.”
§ 350. Made to illustrate the effect of activity on fertility, most comparisons among Mammals are objectionable: other circumstances are not equal. A few, however, escape this criticism.