[A.]THE ELEMENTS OF MENTAL LIFE

§ [4]. Sensation

[1.] The Newly Discovered Kinds of Sensations

We shall discuss first the simplest facts of mental life, later their complications. It has often been objected that such a treatment is not in harmony with the fact that we are more familiar with the complications than with the simpler facts. But we are also more familiar with our body than we are with muscle cells, nerve cells, and blood corpuscles, and yet we do not object to beginning the study of biology by a study of the structural elements and their chief properties. No one understands this to mean that the cells of various kinds existed first separately and were then combined into the body which consists of them. No one should believe that the simple mental states existed separately and were then combined into those complications with which we have become familiar in everyday life. Simple mental states are abstractions. But we cannot hope to understand the complexity of mental life without using abstractions.

Through the sense organs our mind receives information about the external world. The traditional classification of the sensations divided them into five groups. But the distinction of five senses has been found to be insufficient. At least twice as many must be distinguished.

When psychologists tried to explain all human knowledge in terms of experience, they met with some difficulty in the description of our experience of solid bodies. Tactual sensation was found to be insufficient for this explanation, since it informs us only of the side-by-side position of things, that is, of only two dimensions. It was soon recognized that the movements of our limbs were important factors in this experience, and the question was asked: How do we perceive the spatial relations of our limbs and the resistances offered to changes in these spatial relations, that is, to movements? The first answer to this question was, that the muscles, being obviously a kind of sense organ which gives us the familiar sensations of fatigue and muscular pain, are also capable of sending in definite groups of afferent nervous processes according to their conditions of contraction and tension. This answer was quite true, as far as it went; and about 1870 the sensory neurons of muscles were actually discovered. The tendons connecting the muscles with the bones were also found to contain sensory neurons.

But this cannot be all, for we are able to judge the position of our limbs even when the muscles are completely relaxed and a limb is moved by another person. It is further a fact that a weight and the distance through which it is moved can be estimated with fair accuracy, whether the arm is sharply bent or straightened out, although the contraction and tension of the muscles is very different in these two cases. It is now known with some certainty how these estimations are made possible. The surfaces of the joints are furnished with nerves. Make a slow movement of the hand or a finger and attend to the sensation resulting from it. There is little doubt that the sensation is localized in the joint. This view is supported by the fact that electrical stimulation of a joint considerably decreases the accuracy of the estimation of weight and movement.

The three classes of sensations—muscular, tendinous, and articular—are customarily grouped together under one heading as kinesthetic sensations, meaning literally sensations of movement. But, as we have noted, these sensations occur as the result not only of movements of our limbs, but also of pressure or pull when the limb is at rest. They always occur together with tactual sensations, but must nevertheless be strictly distinguished from them.

Soon after this distinction had been recognized, the tactual, or rather cutaneous, sense was found to consist of several senses. The impressions of touch, that is, of pressure on the skin, of temperature, and of pain had always been distinguished; but it had not been known that the areas of greatest sensitivity for touch are not identical with those for temperature, and that the sensitivity for pain may be greatly diminished without a corresponding change in the sensitivity for touch. It was only about 1880 that these observations were explained, when an anatomical separation of the neurons serving these different sensations was demonstrated. If we test the sensitivity of the skin by carefully stimulating single points, it is found that not every point of the skin is sensitive, but that the sensitive points are isolated by larger or smaller insensitive areas. It is further found that the points sensitive to warmth are different from those sensitive to cold or to pressure or to pain. This can easily be demonstrated for the cold points by touching the skin in a number of successive points with a steel pen or a lead pencil. Generally only the touch is perceived, but now and then an intense sensation of cold is felt on definite points, always recurring when these points are touched. It is somewhat more difficult to demonstrate the points sensitive to warmth. The sensation is in this case much less noticeable. The points sensitive to touch are on hairy parts of the skin always close to a hair; on other parts, for instance the palm of the hand and particularly the finger tips, they are located so close together that their separateness can be proved only by the use of very delicate instruments. The same is to be said of the pain points of the skin. We cannot, therefore, regard the skin as one organ of sense, but must regard it as containing four classes of organs serving the senses of warmth, cold, pressure, and pain.

We must be sure, of course, to distinguish between pain, as a sensation, and the feeling of unpleasantness which almost without exception accompanies pain. We must further distinguish the sensation of pain from intense cold, intense heat, strong pressure, dazzling light, all of which may produce pain as a secondary effect. But the sensation of pain is quite dissimilar from the sensations of cold, heat, pressure, and light, to which it is added in consequence of physiological conditions. The independence of the sensation of pain can easily be demonstrated by touching the cornea of the eye with a hair. Pain is then perceived without any touch or temperature sensation. The pricking sensation in our nose resulting from the breathing of chlorine or ammonia may also be mentioned as an illustration of the same point. Let us further understand that pain is not only a cutaneous sensation, but also a sensation localized in internal organs; for instance, headache, toothache, colic.