Man has always dreamed of flight; but when did men first actually fly? We smile at the story of Daedalus, the Greek architect, and his son, Icarus, who made themselves wings and flew from the realm of their foes; and the tale of Simon, the magician, who pestered the early Christian Church by exhibitions of flight into the air amid smoke and flame in mockery of the ascension. But do the many tales of sorcerers in the Middle Ages, who rose from the ground with their cloaks apparently filled with wind, to awe the rabble, suggest that they had deduced the principle of the aerostat from watching the action of smoke as did the Montgolfiers hundreds of years later? At all events one of these alleged exhibitions about the year 800 inspired the good Bishop Agobard of Lyons to write a book against superstition, in which he proved conclusively that it was impossible for human beings to rise through the air. Later, Roger Bacon and Leonardo da Vinci, each in his turn ruminated in manuscript upon the subject of flight. Bacon, the scientist, put forward a theory of thin copper globes filled with liquid fire, which would soar. Leonardo, artist, studied the wings of birds. The Jesuit Francisco Lana, in 1670, working on Bacon's theory sketched an airship made of four copper balls with a skiff attached; this machine was to soar by means of the lighter-than-air globes and to be navigated aloft by oars and sails.
But while philosophers in their libraries were designing airships on paper and propounding their theories, venturesome men, "crawling, but pestered with the thought of wings," were making pinions of various fabrics and trying them upon the wind. Four years after Lana suggested his airship with balls and oars, Besnier, a French locksmith, made a flying machine of four collapsible planes like book covers suspended on rods. With a rod over each shoulder, and moving the two front planes with his arms and the two back ones by his feet, Besnier gave exhibitions of gliding from a height to the earth. But his machine could not soar. What may be called the first patent on a flying machine was recorded in 1709 when Bartholomeo de Gusmao, a friar, appeared before the King of Portugal to announce that he had invented a flying machine and to request an order prohibiting other men from making anything of the sort. The King decreed pain of death to all infringers; and to assist the enterprising monk in improving his machine, he appointed him first professor of mathematics in the University of Coimbra with a fat stipend. Then the Inquisition stepped in. The inventor's suave reply, to the effect that to show men how to soar to Heaven was an essentially religious act, availed him nothing. He was pronounced a sorcerer, his machine was destroyed, and he was imprisoned till his death. Many other men fashioned unto themselves wings; but, though some of them might glide earthward, none could rise upon the wind.
While the principle by which the balloon, father of the dirigible, soars and floats could be deduced by men of natural powers of observation and little science from the action of clouds and smoke, the airplane, the Winged Victory of our day, waited upon two things—the scientific analysis of the anatomy of bird wings and the internal combustion engine.
These two things necessary to convert man into a rival of the albatross did not come at once and together. Not the dream of flying but the need for quantity and speed in production to take care of the wants of a modern civilization compelled the invention of the internal combustion engine. Before it appeared in the realm of mechanics, experimenters were applying in the construction of flying models the knowledge supplied by Cayley in 1796, who made an instrument of whalebone, corks, and feathers, which by the action of two screws of quill feathers, rotating in opposite directions, would rise to the ceiling; and the full revelation of the structure and action of bird wings set forth by Pettigrew in 1867.
"The wing, both when at rest and when in motion," Pettigrew declared, "may not inaptly be compared to the blade of an ordinary screw propeller as employed in navigation. Thus the general outline of the wing corresponds closely with the outline of the propeller, and the track described by the wing in space IS TWISTED UPON ITSELF propeller fashion." Numerous attempts to apply the newly discovered principles to artificial birds failed, yet came so close to success that they fed instead of killing the hope that a solution of the problem would one day ere long be reached.
"Nature has solved it, and why not man?"
From his boyhood days Samuel Pierpont Langley, so he tells us, had asked himself that question, which he was later to answer. Langley, born in Roxbury, Massachusetts, in 1834, was another link in the chain of distinguished inventors who first saw the light of day in Puritan New England. And, like many of those other inventors, he numbered among his ancestors for generations two types of men—on the one hand, a line of skilled artisans and mechanics; on the other, the most intellectual men of their time such as clergymen and schoolmasters, one of them being Increase Mather. We see in Langley, as in some of his brother New England inventors, the later flowering of the Puritan ideal stripped of its husk of superstition and harshness—a high sense of duty and of integrity, an intense conviction that the reason for a man's life here is that he may give service, a reserved deportment which did not mask from discerning eyes the man's gentle qualities of heart and his keen love of beauty in art and Nature.
Langley first chose as his profession civil engineering and architecture and the years between 1857 and 1864 were chiefly spent in prosecuting these callings in St. Louis and Chicago. Then he abandoned them; for the bent of his mind was definitely towards scientific inquiry. In 1867 he was appointed director of the Allegheny Observatory at Pittsburgh. Here he remained until 1887, when, having made for himself a world-wide reputation as an astronomer, he became Secretary of the Smithsonian Institution at Washington.
It was about this time that he began his experiments in "aerodynamics." But the problem of flight had long been a subject of interested speculation with him. Ten years later he wrote:
"Nature has made her flying-machine in the bird, which is nearly a thousand times as heavy as the air its bulk displaces, and only those who have tried to rival it know how inimitable her work is, for the "way of a bird in the air" remains as wonderful to us as it was to Solomon, and the sight of the bird has constantly held this wonder before men's minds, and kept the flame of hope from utter extinction, in spite of long disappointment. I well remember how, as a child, when lying in a New England pasture, h watched a hawk soaring far up in the blue, and sailing for a long time without any motion of its wings, as though it needed no work to sustain it, but was kept up there by some miracle. But, however sustained, I saw it sweep in a few seconds of its leisurely flight, over a distance that to me was encumbered with every sort of obstacle, which did not exist for it.... How wonderfully easy, too, was its flight! There was not a flutter of its pinions as it swept over the field, in a motion which seemed as effortless as that of its shadow. After many years and in mature life, I was brought to think of these things again, and to ask myself whether the problem of artificial flight was as hopeless and as absurd as it was then thought to be"... In three or four years Langley made nearly forty models. "The primary difficulty lay in making the model light enough and sufficiently strong to support its power," he says. "This difficulty continued to be fundamental through every later form; but, beside this, the adjustment of the center of gravity to the center of pressure of the wings, the disposition of the wings themselves, the size of the propellers, the inclination and number of the blades, and a great number of other details, presented themselves for examination."