Finally we have the miners and the miners’ laborers, and it now becomes a matter of especial interest to inquire into the character of their work and their manner of performing it. To drive a gangway or airway is much the same as driving a chamber, except that the gangway is only about one third the width of a chamber, and must be driven on a slightly ascending grade. Gangway driving is special work, for which the miner receives special wages, it being impossible in this work to send out as much coal with the same amount of labor as can be sent out in chamber work. And since the great bulk of coal is taken from the chambers, it will be better to observe in one of them the processes of mining.

There are usually four workmen, two miners and two laborers, employed in each chamber. The miners are employed by, or are under contract with, the coal company, and the laborers are employed by the miners, subject to the approval of the mining superintendent. The two miners divide their profits or wages equally with each other, and are called “butties.” A miner’s butty is the man who works the chamber with him on halves. A laborer’s butty is the man who is associated with him in the employ of the same miners. Between the miner and the laborer there is a well-defined and strictly observed line of social demarcation. The miner belongs to the aristocracy of underground workers; the laborer is of a lower order, whose great ambition it is to be elevated, at an early day, to that height on which his employer stands.

Now as to the work done by these four men. Before the chamber has progressed a pillar’s length above the airway, propping will usually be necessary to sustain the roof, so large an area of which has been left without support. Hardwood props about nine inches in diameter are used for the purpose. They are purchased by the mining companies in large quantities, and are usually cut and hauled to the railroad in the winter time to be shipped at any season to the mines. By the law of 1885 the person or company operating a mine is obliged to furnish to the miner, at the face of his chamber, as many props of the required length as he may need. Having received the props the miner himself sets them on each side of the middle line of the chamber at such points as he thinks require them, or at such points as the mine boss designates. He drives the prop to its place by means of a large flat wedge inserted between the top of it and the roof, thus making the stick tight and firm and also giving it a larger bearing against the roof. Some chambers require very few props; others must be well lined with them. Their necessity depends upon the character of the roof. If it is soft, slaty, and loose it must be supported at frequent intervals. It very rarely occurs that a chamber, worked to its limit, has needed no propping from its foot to its face. Usually a good part of the miner’s time is occupied in setting props as his work at the face advances.

Every seam has its top and bottom bench of coal, divided about midway by a thin slate partition, and one bench is always taken out to a horizontal depth of four or five feet before the other one is mined. If the upper bench contains the best and cleanest coal, with the smoothest plane of cleavage at the roof, that is first taken out; but if the choice coal lies at the bottom, then the lower bench is first mined. The reason for this is that a shot heavy enough to blast out effectually the section of rough, bony, or slaty coal which sticks to the roof or floor would be heavy enough to shatter the adjoining bench of clean brittle coal, and make a large part of it so fine as to be useless.

Let us now suppose that the miner has a clean, vertical wall of coal at the face of his chamber in which to begin work. Making sure that his tools and materials are all at hand, he first takes up his drill. This is a round or hexagonal iron bar about one and an eighth inches in diameter, and about five and a half feet long, tipped at the working end with steel. This end is flattened out into a blade or chisel, having a slight concave curve on its edge, and being somewhat wider at its extremity than the diameter of the bar. At the other end of the drill the diameter is increased to one and a half inches, forming a circular ridge at the extremity of the bar, in one side of which ridge a semicircular notch is cut into the face of the drill. The use of this notch will be subsequently explained. This, then, is the tool with which the miner begins his work. Selecting the bench to be first mined he chooses a point a few feet to the right or left of the middle line of the face and delivers upon it the first stroke with the sharp edge of his drill; and as he strikes successive blows he rotates the drill in his hands in order to make the hole round. The drill is never struck on the head with sledges. Its cutting force depends on the momentum given to it in the hands of the miner, and the stroke made by it is a jumping or elastic stroke.

Instead of the bar drill, which has been described, many of the miners use a machine hand-drill for boring holes. This machine works upon the same principle that the jackscrew does. It is operated by hand by means of a crank, and an auger-like projection forces its way into the coal. The work of turning the crank is more laborious than that of drilling with the bar-drill, but the extra labor is much more than compensated for by the greater speed at which boring is done. It is probably due to the spirit of conservatism among miners that this machine is not in general use by them. Coal-cutting machines, working by steam or compressed air, are not used in the anthracite mines. The character of the coal, the thickness of the seams, and the inclination of the strata make their employment impracticable.

When the hole has been drilled to a depth of about four and a half feet it is carefully cleaned out with a scraper. This is a light iron rod with a handle on one end of it and a little spoon, turned up like a mustard spoon, on the other end. Then the cartridge is inserted and pushed in to the farther extremity of the hole. The cartridge is simply a tube made of heavy manila paper formed over a cartridge stick, filled with black powder, and folded at the ends. Dynamite and other high explosives are not used, because they create too much waste. Ready-made cartridges in jointed sections are largely used, but as a rule the miner makes his own cartridge as he needs it.

The miner’s needle is an iron rod about five and one half feet in length, with a handle at one end. It is about five eighths of an inch in diameter at the handle end, and tapers to a point at the other end. When the cartridge has been pushed in to the extreme end of the bore hole, the needle is inserted also, the point of it piercing the outer end of the cartridge. The needle is then allowed to rest on the bottom or at the side of the drill hole while the miner gathers fine dirt from the floor of the mine, dampens it slightly if it is dry, and pushes it into the hole alongside. This dirt is then forced in against the cartridge with the head of the drill. More dirt is put in and driven home, and still more, until, by the time the hole is filled to its outer extremity, the packing is hard and firm. This process is called tamping. It can now be seen that the semicircular notch on the rim of the blunt end of the drill is for the purpose of allowing the drill to slip along over the needle, which still retains its position, and at the same time to fill the diameter of the hole. The tamping being finished the miner takes hold of the needle by the handle, turns it once or twice gently in its bed, and then slowly withdraws it. A round, smooth channel is thus left from the outside directly in to the powder of the cartridge, and into this channel the squib is inserted. The squib is simply an elongated fire-cracker. It has about the diameter of a rye straw, is about four inches in length, and its covering projects an inch or two at one end and is twisted up for a fuse. The covering of the squib may indeed be of straw, sometimes it is of hempen material, but more often, in these days, it is made of paper. It is filled with powder and is then dipped into a resinous mixture to make it water-proof, to coat over the open end so that the powder shall not run out, and to make the wick at the other end mildly inflammable. If the bore hole should be very wet an iron or copper tube, through which the needle is run, is laid to the cartridge before the hole is tamped, and when the needle is withdrawn the squib is inserted into the mouth of the tube. If inflammable gases are exuding from the coal through the bore hole, or if for any other reason it is feared that the cartridge will be exploded too quickly, a short piece of cotton wick, dipped in oil, is attached to the fuse of the squib to lengthen it, and this extra section of fuse is allowed to hang down from the mouth of the bore hole against the face of coal.