Figure 2.—Portion of horizontal section of head about an inch below the condyles of the lower jaw. The outward direction of the external pterygoids is well shown; also the close relation of the levatores and tensores palati with the internal pterygoids.

The influence of the contraction of the masticatory muscles on the local circulation of blood and lymph.—When a muscle is at rest the blood flows sluggishly through it, while there is a complete, or all but complete, stagnation of the lymph current; if a lymphatic trunk of a limb at rest be cut no lymph escapes from it. Rhythmic muscle contractions, however, stimulate the flow both of blood and lymph (a), in the contracting muscles themselves and (b) in the neighbouring parts. (a) Not only are the muscle arteries dilated during rhythmic contractions, but the blood is vigorously squirted out of the muscle veins, so that much more blood flows through a muscle during its rhythmic contraction than during rest. The flow of lymph is even more markedly stimulated,—this fluid, which, while the muscle is at rest, is stagnant or all but so, being during contraction driven actively along the lymphatic trunks. (b) How greatly rhythmic muscle contractions influence the circulation of fluids in the neighbouring parts is shown by the flushing of the skin and the swelling of the soft parts generally of a limb which is being exercised. We thus see how profoundly the exercise of the masticatory muscles—and among these we must not forget to include the tongue—influences not only their own nutrition but that of the important structures adjacent to them—that is to say, of the jaw-bones, salivary glands, buccal mucous membrane, soft palate, faucial tonsils, pharynx, and naso-pharynx, as well as of the nasal cavities and their accessory sinuses. All these parts are during mastication copiously flushed with blood and lymph, from which it is evident that efficient mastication must stimulate their nutrition and favour their proper development. Hence, in one who has from childhood upwards been accustomed to masticate efficiently, we generally find these parts well developed, the jaws large and shapely, the teeth regular and straight, the tongue and salivary glands large, the nasal and naso-pharyngeal passages spacious, and the mucous membrane of the buccal and adjoining cavities healthy.

Influence of mastication on the jaw-bones.—It is well known that the size of a bone is largely determined by the degree to which the muscles attached to it are exercised. That the jaws do not grow to their normal size, if not adequately exercised during their period of growth, is strikingly shown by the overcrowding of the teeth, which takes place in those brought up on soft foods, and this even though there be no contraction of the jaws resulting from mouth-breathing. The dependence of the size of the jaws upon the degree to which they are exercised is also shown by the smallness of the modern jaw, as compared with that of primitive peoples, a difference which, as we shall see, is in part congenital and in part due to the comparative disuse of the former. Mastication influences not only the size but also the shape of the jaws (a), through its influence on the size of the tongue, which by pressing against the teeth tends, as Sim Wallace has shown, to expand the jaws; (b) by the pressure of opposing teeth against one another, which has a similar effect; and (c) by the outward pull of the pterygoids, which tends to widen the maxilla posteriorly and to broaden the posterior nares.

Influence of mastication on the teeth.—The teeth being developed within the jaw-bones and remaining, even after eruption, in close anatomical and physiological association with them, must necessarily share in their nutritive tendencies. If these bones are efficiently exercised during the formation of the teeth—and my remarks apply especially to the permanent set—the tooth-germs will be abundantly flushed with blood, while the ample growth of the jaws themselves will provide the germs with plenty of room in which to grow and to develop, and the more perfect their growth and development the more resistant should we expect them to be to the ravages of caries. Who can contemplate the jaw-bones of a six-years-old child, dissected so as to display all the imbedded teeth, without being assured of the effect of mastication upon dental development? Fifty-two teeth meet the view: the whole region from the orbital rims to the inferior border of the mandible is literally paved with them, and I can hardly doubt that they collectively weigh more than the bone in which they are imbedded. Surely no one can examine such a dissection without being convinced of the urgent necessity, if the teeth are to grow and to develop normally, of giving the child’s jaws from infancy onwards plenty of work to do.

The ample development of the jaws, which efficient mastication brings about, has a further beneficial effect as regards the teeth, in that it enables them to take up their proper places in the alveolar ridges, thus securing all the advantages of a good “bite.” These I now proceed to consider. The teeth during mastication, and especially when the bite is good and the food of a kind necessitating vigorous and sustained mastication, are made to move in their sockets both vertically and horizontally; the effect of this is to stimulate the circulation in the tooth-pulp, the alveolar periosteum (and hence also in the cementum and alveolar walls which are supplied by it), and the circumjacent mucous membrane of the gum. All this makes for the health of the teeth; not only does it promote the nutrition of the tooth itself and of its bony socket, thus maintaining a firm dental setting, but it also tends to secure a healthy environment for the exposed part of the tooth—that part, namely, wherein caries begins—by maintaining a healthy state of the surrounding and, indeed, of the entire buccal mucous membrane, as well as of the various secretions which bathe the mouth. Wherefore it is not surprising to find that those who masticate efficiently suffer much less from dental caries and its complications (such as abscess at the root) and disease of the periodontal membrane (e.g., pyorrhœa alveolaris and loosening of the teeth) than those who are accustomed to bolt their food.

A few words as to the influence of mastication in wearing down the teeth. In those races which masticate vigorously the teeth in quite early adult life show signs of wearing away, while in later life it is quite common for the biting surfaces to be worn flat; sometimes the crown of the molars is worn away so that its surface shelves downwards and inwards and not infrequently it is concave, having a scooped-out appearance; often the dentine is exposed in this way; and yet among many hundreds of skulls examined I do not remember to have seen one single case where caries has started on the biting surface thus worn down.

I had always attributed this wearing down of the teeth to the friction of coarse food against them. Primitive races eat coarse vegetable food, which frequently contains grit, and this doubtless helps to grind the teeth down, but they may be markedly ground down even in those living on soft food, and in such cases the grinding away can obviously only be due to the friction of opposing teeth against one another. I, indeed, believe this to be the essential cause of the phenomenon, both in civilised races living on soft food and in primitive races whose coarse food necessitates prolonged and vigorous mastication and a corresponding amount of attrition between the biting surfaces of opposing teeth. In order that this attrition may occur two things are requisite: the upper and lower teeth must be well opposed—there must be a good bite—and mastication must be vigorous and of the right kind. Mere vertical pressure of the teeth against one another will not wear away the opposing surfaces; there must be friction of these surfaces against one another—a transverse and sagittal movement of the lower teeth against the upper by means of the pterygoids. Mainly to this do I attribute the marked wearing down of the teeth observed in primitive peoples, and I am gratified to know that so competent an authority on dental pathology as Sim Wallace is a convert to this view.

That all the teeth may be worn down just as we observe in primitive people, even in those who have lived all their lives on the ordinary fare of the moderns, is proved by a case I have under observation. It is that of a man in his fiftieth year, who was brought up in Belgium but who has resided in London for the last thirty years. When he came to my out-patient room I was not a little surprised to find that all his teeth were sound—a very unusual occurrence, I need hardly say, among the London poor at his age. In seeking for an explanation I elicited the fact that he was unable to swallow his food without chewing it very thoroughly, and on giving him a moderate-sized piece of bread, with the request that he should chew it in the ordinary way, I found that he subjected it to one hundred and twenty separate bites before swallowing it, and in the steady, deliberate way he went to work and in his extensive lateral movements of the mandible he reminded one for all the world of a cow chewing its cud. The temporals and masseters of this man are enormous, and the like is no doubt true of the pterygoids; he has well-developed nasal passages, has never suffered from nasal obstruction, while his buccal mucous membrane is unusually healthy for one of his years and circumstances. May we not attribute this healthy state of the mouth, teeth, and nose to the good effects upon them of efficient chewing? Here is a man who has lived for thirty years in London on the same kind of food as the average poor Londoner, but instead of finding his mouth full of carious, tartar-coated teeth, and spongy, receding, pus-exuding gums, we find thirty-two sound teeth firmly set in healthy gums and all but devoid of tartar.

A word as to the wearing down of the teeth in the anthropoid apes. In this respect the gorilla differs markedly from the orang and the chimpanzee. In all the skulls of these latter which I have examined the teeth show signs of wearing away, while I have found the teeth of the gorilla, with the exception of the tusk-like canines, but little worn. From this we should expect the latter animal to be mainly carnivorous, and the orang and chimpanzee to be largely herbivorous.