The beginning of deglutition was noted by one observer by a finger on the larynx; the same observer called out when the bolus arrived at the thorax, heart, and stomach respectively, while the other observer noted the time. The movement of solids will first be considered. The descent the entire way was by peristalsis, but the rapidity varied. The duration of the movement in the cervical portion was two and a half seconds, and in the thoracic region a little less than two seconds. At the lower end of the heart there was sometimes a slight pause. In the lower section, from the heart to the stomach, the movement was decidedly different; the rate was always very slow. The distance was less than one-third of the entire canal, yet the time consumed in this part ranged from six to seven seconds, or three-fifths of the entire time of descent. The character of the movement here was also peculiar. Whereas in the upper sections the passage was uniform and regular, with a slight acceleration in the thoracic region, here it was apparently irregular, for the bolus descended about one centimetre with each inspiratory movement of the diaphragm, and remained stationary or descended very slightly during expiration. Thus a series of hitches seemed to carry the bolus to the cardia. A probable explanation of this peculiar movement is that the stomach and lower œsophagus were pulled down with each descent of the diaphragm. This would make the movement appear irregular, although it was really a slow peristalsis. It may be well to remark here that this movement was invariably observed in the cat with every kind of food.

Semi-solids, namely, a mush of bread and milk, descended in the same way as solids; but the rate was slightly faster in the upper œsophagus, for the bolus took about a second less to reach the cardiac level. From here the rate was the same as with solids.

For liquids, one and a half to two seconds sufficed for the descent to the midheart region. Here there often occurred a long pause, from a few seconds to a minute or more. Then the œsophagus apparently contracted above the liquid, which slowly passed on to the stomach, as already described. Sometimes it seemed as if a swallowing movement, evidenced by a rise of the larynx, started the peristaltic wave. Again, several swallows would succeed one another before the liquid passed on. A few times the bismuth and milk seemed strung out along the œsophagus; some more liquid descending would gather this up, and the whole mass, assuming an ovoid form, would move into the stomach.

Thus in the cat the total time for deglutition varies from nine to twelve seconds. The lowest section presents no change ascribable to a difference in consistency, while in the upper sections the rate does slightly increase with the more liquid character of the food.

In experiments on the dog, bismuth enclosed in capsules or wrapped in shreds of meat was fed as the solid. The general phenomena were as follows: With the rise of the larynx there was a quick, propulsive movement of the bolus, which descended rapidly for a few centimetres, sometimes as far as the clavicle. From this point the rapidity was diminished, yet no pause was observed; the bolus simply moved more slowly. This rate was then continued to the stomach without a slackening of speed in the diaphragmatic region, as was observed in the cat. Semi-solids moved in the same way as solids. The total time of descent from larynx to stomach was from four to five seconds.

Liquids gave even a more decided squirt in the beginning of the movement. To render the œsophagus as lax and free as possible, the head of the dog was released from the upright rods and held by the hands after the food was placed in the mouth. Sometimes the liquid descended rather rapidly as far as the heart, at other times no further than the clavicle; then without a pause it passed on slowly and regularly, reaching the stomach in about the same time as solids and semi-solids.

Thus in the dog and cat but little variation was seen in the swallowing of liquids and solids. The liquids pass somewhat faster in the upper œsophagus. But in some animals the difference of rate with foods of varying consistency is much more marked. In the horse, for instance, mere observation shows a decided variation in the rate of movement in the œsophagus. Liquids shoot along the gullet, while solids move clearly by peristalsis. To determine the rate of solids, one hand was placed on the larynx of a horse to note the beginning of swallowing, and the other hand near the shoulders, where the bolus could be easily felt in its passage. The time consumed by the bolus in passing over a certain distance was measured by a stop watch. The rate obtained for solids, such as hay or grain, was from thirty-five to forty centimetres a second.

For semi-solids, a mixture of bran and water was made, thin enough to run easily between the fingers. Each bolus was watched by a separate observer with a separate watch. The average rate obtained was the same as for solids.

Liquids in the horse pass with a rapidity too great to be affected by peristalsis. Another force must be sought. Among the various muscles supposed to be effectual in moving food into the pharynx, the mylohyoids were shown by Meltzer to be essential. The styloglossi were cut by him without much interference with deglutition, but section of the mylohyoid nerves rendered the act impossible. The activity of these muscles in the horse during swallowing is easily perceived by the hand. Their energetic contraction is a sufficient explanation of the rapid passage of water through the œsophagus. The motion here is more than five times as rapid as that of solids and semi-solids.

Meltzer’s experiment to measure the rate of liquids in man by passing a stomach tube containing litmus paper was repeated by us with some modifications. Congo red paper was used, since it is more sensitive than litmus; it also furnishes a means of differentiating between mineral and organic acids, as the discolouration produced on Congo red by mineral acids is removed by ether. It was thus possible to distinguish between the discolouration produced by gastric regurgitation and that produced by the swallowed liquid. For the swallowed liquid, one-half per cent lactic acid was found most satisfactory, as the colour produced by it on Congo red test paper is almost instantly discharged in ether. By this method the paper was found discoloured within half a second after the rise of the larynx, certainly too short a period for a peristaltic wave to carry the liquid to the neighbourhood of the cardia.