The appearance of the stomach during vomiting has been studied particularly by Openchowski. He says that when an emetic is given there follows a quivering of the stomach-wall, which, beginning near the pylorus, shows itself later in the antral and middle regions of the stomach. The quivering afterwards passes into a contraction, most strongly marked in the antral part, since the peristaltic waves running down to the antrum from above are continually growing deeper. At the same time the fundus expands spherically. The increased contraction in the pyloric part drives the contents towards the more dilated portion, and thence they are forced into the œsophagus by abdominal pressure.
The same phenomena occur when a cat is given apomorphine hypodermatically. First the upper circular muscles relax and become so flaccid that the slightest movement of the abdomen changes the form of the fundus. Then there are apparently irregular twitchings of the fundus wall. Soon a deep constriction starts about three centimetres below the cardia and, growing in strength, moves towards the pylorus. When it reaches the transverse band the constriction tightens and holds fast, while a wave of contraction sweeps over the antrum. Another similar constriction follows. In the interval the transverse band relaxes slightly, but tightens again when the second wave reaches it. Perhaps a dozen such waves pass; then a firm contraction at the beginning of the antrum completely divides the gastric cavity into two parts. This same division of the stomach into two parts at the transverse band is to be seen when mustard is given. Now, although the waves are still running over the antrum, the whole preantral part of the stomach is fully relaxed. A flattening of the diaphragm and a quick jerk of the abdominal muscles, accompanied by the opening of the cardia, now force the contents of the fundus into the œsophagus. As the spasmodic contractions of the abdominal muscles are repeated, the gastric wall again tightens around the contained food. Antiperistalsis I have seen only once; then, while the cat was retching, a constriction started at the pylorus and ran back, over the antrum, completely obliterating the antral cavity.
It will be recalled that the principal difference between the movements of the stomach and their effects as described by Beaumont, and Hofmeister and Schütz on the one hand, and Rossbach, Roux and Balthazard, and myself on the other hand, is that the former observed constrictions completely dividing the stomach at the transverse band, and the antrum then squeezing its contents into the intestines; whereas the latter have seen the constrictions moving forward as narrowing rings, but not separating the gastric cavity into two parts.
With the exception of peristalsis in the antrum, the gastric movements at the beginning of emesis are almost exactly the same as those Beaumont, and Hofmeister and Schütz, declare to be the normal contractions of the stomach. Their observations were made, however, when the organ was subjected to unnatural stimulation. In the excised stomach, observed by Hofmeister and Schütz, not only were all nervous connections severed, but likewise all flow of blood to the organ was entirely stopped, and the cutting off of the blood supply is regarded as one of the most powerful predisposing causes of peristaltic action. The thermometer-tube used by Beaumont was an irritant to the stomach, as he himself admits. “If the bulb of the thermometer,” he writes, “be suffered to be drawn down to the pyloric extremity, and retained there for a short time, or if the experiments be repeated too frequently, it causes severe distress and a sensation like cramp, or spasm, which ceases on withdrawing the tube, but leaves a sense of soreness and tenderness at the pit of the stomach.” Moritz also noticed that a rubber sound introduced into the human stomach proved to be a source of irritation. It seems reasonable to suppose, therefore, that these observers did not see the normal movements, but the actions resulting from abnormal irritation.
The Effect of the Movements of the Stomach on the Food
In my first observations on the active stomach a bulging of the stomach-wall was to be seen in front of the passing waves. But as food did not immediately appear in the intestine, and as, after the pylorus relaxed, the gastric contents did not diminish rapidly enough to allow the supposition that all of the food squeezed forward by the waves was immediately forced through the pylorus, it was assumed that a part, at least, of the food under pressure was forced back towards the cardia through the constriction-ring. This inference was stated in the preliminary notice of my work. Roux and Balthazard also observed the passage of the undulations over the pyloric part, but state merely that the function of the constrictions is the propulsion of food into the intestine, without mentioning what must be regarded as a very important function; namely, the mixing effect of the waves.
Most writers have agreed that the result of the active and passive movements of the stomach is to force the contents hither and thither, thus mixing them and the gastric juice together. Two observers, Beaumont and Brinton, have attempted to explain the manner of the mixing. Beaumont, after noting how the thermometer-tube, used by him to indicate the gastric motions, was affected, describes the circulation of the food as follows: “The bolus as it enters the cardia turns to the left, passes the aperture, descends into the splenic extremity, and follows the great curvature towards the pyloric end. It then returns, in the course of the small curvature, makes its appearance again at the aperture, in its descent into the great curvature, to perform similar revolutions.” Brinton bases his theory of the circulation of the food on an analogy between the movement of a constriction over the stomach and the passage of a septum with a central perforation along the interior of a cylinder full of liquid. The result in both cases, he declares, must be a peripheral current of advance, and a central current of return. Thus in the stomach there would be peripheral currents from the cardia along the walls of the stomach to the pylorus, where they would unite and run as an axial current back to the cardia.
Certain a priori objections may be urged against each of these conclusions. In the first place Beaumont’s observations were made on a subject having a gastric fistula, and the adhesions between the stomach and the abdominal wall would prevent the fundus from acting quite normally in relation to its contents. Beaumont’s conclusions, furthermore, are based on the movements of a thermometer-tube introduced through the fistula, and on the recognition of particles of food which he had seen before as they passed the fistulous opening: the first method, as has been shown, made the conditions in the stomach more abnormal than they were previously; the second gave uncertain knowledge of the course of the food when out of the observer’s sight. Brinton’s hypothesis states the probable movements of fluid contents acted on by a passing constriction. But it may be objected that the conditions assumed by him do not exist in all parts of the stomach. For not only is there no peristalsis visible in the fundus, but with the usual food the fundus contents are not liquid. Moreover, the constrictions at the beginning of the pyloric portion are very slight and move slowly. The food in front of them is, accordingly, not under much greater pressure than the food behind them. The axial current which might result, therefore, could not be strong enough to go far into the cardiac portion.
It is easily possible to test experimentally the validity of these two theories by watching the action of pieces of food which throw a black shadow in a dimly outlined stomach. For this purpose little paste pellets of bismuth subnitrate, with starch enough to keep the form, were given with the customary meal. These pellets, it was found, did not break up in the stomach during the gastric digestion of soft bread. Several times I have been fortunate in getting two of the little balls in the axis of the stomach and about a centimetre apart. As the constriction-wave approached them, both moved forward, but not so rapidly as the wave. Now when the constriction overtook the first ball, the ball moved backward through the constricted ring, in the direction of least resistance. The wave then overtook the second ball, and it also passed backward to join its fellow. At the approach of the next wave they were both pushed forward once more, only to be again forced backward, one at a time, through the narrow orifice. As the waves recurred in their persistent rhythm, the balls were seen to be making progress—an oscillating progress—towards the pylorus; for they went forward each time a little farther than they retreated. This to-and-fro movement of the pellets was much more marked in the antrum, where the waves were deep, than in the middle region. On different occasions from nine to twelve minutes have elapsed while the balls were passing from where the waves first affected them to the pylorus; which means that on the way they were moved back and forth by more than a half hundred constrictions.
If the pylorus does not relax, it is evident that a wave approaching it pushes the food into a blind, elastic pouch, the only exit from which is through the advancing constricted ring. The constrictions are deeper near the end of the antrum, and the rings are small; consequently, the food is squirted back through them with considerable violence. As has been noted, the pylorus opens less frequently for a while after a solid piece of food comes to it. In such a case the slow driving waves squeeze the hard morsel and the soft food about it up to the sphincter, only to have the whole mass shoot back, sometimes half-way along the antrum. Over and over again the process is repeated till the sphincter at last opens and allows the more fluid parts to pass. Hofmeister and Schütz, and Moritz have disclaimed any selective action of the pylorus, and declare that solids are driven from the pylorus to the fundus by antiperistalsis. The action of the pylorus which I have seen, however, is more like that described by the earlier investigators; for during digestion there was no antiperistalsis, and the sphincter, separating the fluids from the solids, caused the solids to remain and undergo a tireless rubbing. Frequently, when several of these balls have been given at the same time, they have all been seen in the antrum after the stomach was otherwise empty. Here they remain to be softened in time by the juices, or to be forced through the pylorus later, for solids do pass into the intestine. Thus when the teeth neglect their work the stomach attempts to perform their function; the relative inefficiency of the gastric method of grinding and its interference with the normal gastric activities point an obvious hygienic moral.