And nature would be quite as intractable in the case of "force-correlation," another of Mr. Spencer's redoubtable phrases. This term is quite recent in its application to animate objects, nor has it been long applied to inanimate. It is claimed to be a recently discovered force, and is one that the materialists have seized upon as the Herculean club with which to smite all vital theories to the earth. Its meaning, so far as it has any, is not difficult to get at. The simplest way to explain it, however, is the best. The reader is to understand that when he rubs two flat sticks together, the heat thereby engendered is not the result of friction, as all the world has heretofore supposed, but that the amount of force expended in rubbing the right-hand stick against the left-hand stick, is, by some law of versability, not over-well defined, transferred to the two sticks, and gets so entangled between their surfaces that it can only reappear in another and altogether different kind of force. When it leaves the hands and passes into the two sticks, it is, as the materialists assert, vital force. But as no force can be annihilated, the conclusive assumption is that it still exists somewhere. All of it, in the first place, went into the two flat sticks, and, when there, ceased to be vital force. Some of it disappeared, of course, in overcoming the inertia of the sticks, but the bulk of it became entangled with the superficial molecules of the two sticks, and reappeared as heat--another name for molecular force.

This is what is meant by the "differentiation" of vital force into molecular force, and vice versa. But by what process of rubbing, under this law of versability, molecular force can be reversed, or differentiated back into vital force, Mr. Spencer has not condescended to inform us. The simple truth is, and the materialists will be forced to admit it in the end, that there is no verification of this theory beyond that of mere force-equivalence. For instance, it has been experimentally determined that a certain amount of fuel expended in heat is equivalent to a certain amount of mechanical force, not mechanical work, as M. Carnot puts it. For force is not expended in work until it is actually generated, and the amount generated, not that expended in work, is the real equivalence of the heat produced from fuel.

Another problem is presented when it comes to determining the amount of generated force necessary to run a piece of machinery which shall accomplish a given amount of mechanical work.

A far better phrase to express this equivalence of force has been suggested and used by several writers in what is called the "Transmutation of Force." For there is no correlation, or reciprocal relation, between heat as originally produced by the consumption of fuel and the force as engendered in steam before it is transmuted into work. Nor is there any real equivalence as between the two forces after its transmutation. A very large per centage of heat is lost in its transmutation from a latent form in fuel to an active or available form in steam, and a still greater loss in its transmission into work by machinery. Theoretically, there may be such an equivalence as that named, but practically it is impossible to realize it. And a theory that is impossible of realization is of no practical utility in itself, and of little value as the basis of further theory. If, then, the theory of force equivalence is a failure in practical application, it furnishes a very poor basis on which to predicate force-correlation, or the doctrine of reciprocal forces. It is estimated, for instance, that a pound weight falling seven hundred and seventy-two feet, will, in striking the earth, impart to it a degree of heat equivalent to raising one pound of water 1° F. But the heat thus imparted can never be so utilized as to raise a pound weight seven hundred and seventy-two feet into the air.

This shows that there is no actual reciprocity of relationship between the force as originally engendered and finally expended in work. Nor can it be shown that the original force is transmuted or changed into another and different kind of force by the operation. The force generated and the force expended are essentially one and the same, as much so as that transmitted from the power to the weight by means of a rope and pulley. And the quality of the force is not changed, whether the weight be lifted by machinery or the human hand. Force, in its mechanical sense, is that power which produces motion, or an alteration in the direction of motion, and is incapable of being specialized, except in a highly figurative sense, into a thousand and one correlates of motion. But these miscellaneous and figurative forces are not what we are considering. The doctrine of force-correlation takes no such wide and comprehensive sweep. It embraces neither the force of wit, nor the force of folly; but mechanical force and its equivalents. The force exercised by the human hand in lifting a weight either with or without rope and pulley is, in every definitional sense of the word, mechanical force. For the arm and hand are only the implements, or mechanical contrivances of nature, by which the will-power transmutes itself into work, or, more properly speaking, transmits itself from the point of force-generation to that of force-expenditure. And this is precisely the office performed by all mechanical contrivances for the transmission--not transmutation--of force. And the most perfect machine is that which transmits the engendered force, with the least possible waste or abandonment, to its point of ultimate expenditure in work.

All these hypothetical correlates of force, therefore, predicated upon the doctrine of force-transmutation, have no foundation in fact, since the force transmitted from the point of generation to the point of expenditure undergoes no change but that of direction, in its passage along rope, wire, belt, pulley, shafting, etc. A man whose limbs have been paralyzed, may still will to remove mountains. The will-power is the same, but the mechanical contrivances for its transmission are wanting. Of the actual point or centre of this force-generation, in the case of the will-power, we know nothing; but the moment the power is started on its way towards the point of force-expenditure, whether it traverses the nerves and tissues of the brain, or the right arm or the left, or a crowbar or pickaxe, it is in no sense distinguishable from the force that traverses a rope and pulley. Nor is there any evidence that it undergoes molecular changes, or becomes modified or conditioned by any nearly or remotely related force, as it darts along the nerves, runs through the contracted tissues, electrifies the crowbar, or flashes into work from the point of a pickaxe. Whatever produces, or tends to produce, motion, or an alteration in its direction, is mechanical force, no matter from what force-centre it may start. When we can definitely determine the centre of vital force, as exercised in building up vital structure, not in wielding pickaxes, it is to be hoped we shall be able to distinguish, by the proper correlates, vital force from that which is mechanical. But the task is manifestly a hopeless one with the materialists.

Professor Beale positively denies that there are any such physical force-relations as those claimed by the materialists, and asserts that vital force bears no relation, or correlation, to either chemical or physical force; that the one is a distinct and separate factor from the other, and cannot be interpreted in the same force-formulæ. He says: "The idea of motion, or heat, or light, or electricity forming or building up, or constructing any texture capable of fulfilling a definite purpose, seems absurd, and opposed to all that is known, and yet is the notion continually forced upon us, that vitality, which does construct, is but a correlate of ordinary energy or motion."

But after devoting so much time to "force-correlation," and "force-differentiation," the advocates of "molecular-machinery" may feel themselves neglected if we dismiss their favorite hobby without further notice. The precise parentage of this term is disputed, but it has any number of putative fathers. We have spoken of the size of the molecules themselves, and the numbers of them that might be huddled together on the point of a cambric needle without jostling. Let us now consider the size of a molecular machine. For each molecule runs its own machine, and is provident enough to see that they do not jostle. In fact, it is a very nice question in physics, whether the machines do not run the molecules, instead of the prevailing opposite opinion that the molecules run the machines. Unfortunately, the question is one that can never be determined. The requisite scientific data will forever be wanting.

But Professor James C. Maxwell, now, or quite recently, filling the chair of experimental physics in the University of Cambridge, England, has furnished us with approximate calculations. On the strength of his approximations we will proceed to consider the dimensions of these wonderful little machines. And first, it may be axiomatically laid down that these molecular machines, which either run the molecules or are run by them, can never exceed the size of their respective molecules. Conceding, then, that each one of these machines exactly fits into its own molecule, so as to present identically the same dimensions--as well as their largest possible dimensions--it would require two millions of them, placed in a row, to make one millimetre, or the one three hundred and ninety-four thousandths of an inch in length, or seven hundred and eighty-eight billions of them to make one inch! Who will ever be staggered at Sirius-distances, after this? And who will deny that an infinite world lies below the point of our microscopic vision, if not an Infinite kingdom and throne beyond our telescopic glance?

But, following the same high authority in experimental physics, let us consider the aggregate weight of these molecular machines. We will not marshal their aggregate numbers in a row, for an array of forty billions of them would make too insignificant a figure for inspection; but simply give their actual weight as computed under the French or metric system. Take, then, a million million million million of these machines, throwing in molecules and all, and they will weigh, if there is no indiscreet kicking of the beam, just a fraction between four and five grammes, or--to differentiate the weights--a small fraction over one-tenth of an ounce!