THE GENEALOGY OF PLANTS.
The most ancient period of whose organisms any trace remains in the rocks seems to have been, prevailingly at least, a period of Thallogens. We must, of course, take into account the fact, that it has yielded no land plants, and that the sea is everywhere now, as of old, the great habitat of the algæ,—one of the four great orders into which the Thallogens are divided. There appear no traces of a terrestrial vegetation until we reach the uppermost beds of the Upper Silurian System. But, account for the fact as we may, it is at least worthy of notice, that, alike in the systems of our botanists and in the chronological arrangements of our geologists, the first or introductory class which occurs in the ascending order is this humble Thallogenic class. There is some trace in the Lower Silurians of Scotland of a vegetable structure which may have belonged to one of the humbler Endogens, of which, at least, a single genus, the Zosteraceæ, still exists in salt water; but the trace is faint and doubtful, and, even were it established, it would form merely a solitary exception to the general evidence that the first known period of vegetable existence was a period of Thallogens. The terrestrial remains of the Upper Silurians of England, the oldest yet known, consist chiefly of spore-like bodies, which belonged, says Dr. Hooker, to Lycopodiaceæ,—an order of the second or acrogenic class. And, in the second great geologic period,—that of the Old Red Sandstone,—we find this second class not inadequately represented. In its lowest fossiliferous beds we detect a Lycopodite which not a little resembles one of the commonest of our club mosses,—Lycopodium clavatum,—with a minute fern and a large striated plant resembling a calamite, and evidently allied to an existing genus of Acrogens, the equisetaceæ. In the Middle Old Red Sandstone there also occurs a small fern, with some trace of a larger; and one of its best preserved vegetable organisms is a lepidodendron,—an extinct ally of the Lycopodiums; while in the upper beds of the system, especially as developed in the south of Ireland, the noble fern known as Cyclopteris Hibernicus is very abundant. This fern has been detected also in the Upper Old Red of our own country, mingled with fragments of contemporary calamites. With, however, these earliest plants of the land yet known, there occurs a true wood, which belonged, as shown by its structure, to a gymnospermous or polycotyledonous tree, and which we find associated with remains of Coccosteus and Diplacanthus.
| Fig. 2.
CYCLOPTERIS HIBERNICUS. (Nat. size.) | Fig. 3.
CONIFER OF THE LOWER OLD RED SANDSTONE. Cromarty. (Mag. forty diameters.) |
And here let me remark, that the facts of Palæontological science compel us to blend, in some degree, with the classification of our modern botanists, that of the botanists of an earlier time. In a passage already quoted, Solomon is said to have discoursed of plants, "from the cedar tree that is in Lebanon, to the hyssop that springeth out of the wall,"—from the great tree to the minute herb; and Cowley rose, in his metrical treatise, as has been shown, from descriptions of herbs and flowers to descriptions of fruit and forest trees. And as in every age in which there existed a terrestrial vegetation there seem to have been "trees" as certainly as "herbs," the palæontological botantist finds that he has, in consequence, to range his classes, not in one series, but in two,—the Gymnogens, or cone-bearing trees, in a line nearly parallel with the Acrogens, or flowerless, spore-bearing herbs. But the arrangement is in no degree the less striking from the circumstance that it is ranged, not in one, but in two lines. It is, however, an untoward arrangement for the purposes of the Lamarckian, whose peculiar hypothesis would imperatively demand, not a double, but a single column, in which the ferns and club mosses would stand far in advance, in point of time, of the Coniferæ. In the Coal Measures, so remarkable for the great luxuriance of their flora, both the Gymnogens and Acrogens are largely developed, with a very puzzling intermediate class, that, while they attained to the size of trees, like the former, retained in a remarkable degree, as in the Lepidodendra and the Calamites, the peculiar features of the latter. And with these there appear, though more sparingly, the Endogens,—monocotyledonous plants, represented by a few palm-like trees (Palmacites), a few date-like fruits (Trigonocarpum), and a few grass-like herbs (Poacites). In the great Secondary division, the true dicotyledonous plants first appear; but, so far as is yet known, no dicotyledonous wood. In the earlier formations of the division a degree of doubt attaches to even the few leaves of this class hitherto detected; but in the Lower Cretaceous strata they become at once unequivocal in their character, and comparatively abundant, both as individuals and species; and in the Tertiary deposits they greatly outnumber all the humbler classes, and appear not only as herbs, but also as great trees. Not, however, until shortly before the introduction of man do some of their highest orders, such as the Rosaceæ, come upon the scene, as plants of that great garden—including the fields of the agriculturist—which it has been part of man's set task upon earth to keep and to dress. And such seems to be the order of classification in the vegetable kingdom, as developed in creation, and determined by the geologic periods.
Fig. 4.[5]
THE GENEALOGY OF ANIMALS.
The parallelism which exists between the course of creation, as exhibited in the animal kingdom, and the classification of the greatest zoologist of modern times, is perhaps still more remarkable. Cuvier divides all animals into vertebrate and invertebrate; the invertebrates consisting, according to his arrangement, of three great divisions,—mollusca, articulata, and radiata; and the vertebrates, of four great classes,—the mammals, the birds, the reptiles, and the fishes. From the lowest zone at which organic remains occur, up till the higher beds of the Lower Silurian System, all the animal remains yet found belong to the invertebrate divisions. The numerous tables of stone which compose the leaves of this first and earliest of the geologic volumes correspond in their contents with that concluding volume of Cuvier's great work in which he deals with the mollusca, articulata, and radiata; with, however, this difference, that the three great divisions, instead of occurring in a continnous series, are ranged, like the terrestrial herbs and trees, in parallel columns. The chain of animal being on its first appearance is, if I may so express myself, a threefold chain;—a fact nicely correspondent with the further fact, that we cannot in the present creation range serially, as either higher or lower in the scale, at least two of these divisions,—the mollusca and articulata. In one of the higher beds of the Upper Silurian System,—a bed which borders on the base of the Old Red Sandstone,—the vertebrates make their earliest appearance in their fourth or ichthyic class; and we find ourselves in that volume of the geologic record which corresponds to Cuvier's volume on the fishes. In the many-folded pages of the Old Red Sandstone, till we reach the highest and last, there occur the remains of no other vertebrates than those of this fourth class; but in its uppermost deposits there appear traces of the third or reptilian class; and in passing upwards still, through the Carboniferous, Permian, and Triassic Systems, we find reptiles continuing the master existences of the time. The geologic volume in which these great formations are included corresponds to the Cuvierian one devoted to the Reptilia. Early in the Oolitic System, birds, Cuvier's second class of the vertebrata, make their first appearance, though their remains, like those of birds in the present time, are rare and infrequent; and, for at least the earlier periods of their existence, we know that they were,—that they haunted for food the waters of the period, and waded in their shallows,—only from marks similar to those by which Crusoe became first aware of the visits paid to his island by his savage neighbors,—their footprints, left impressed on the sands over which they stalked of old. This early Oolitic volume corresponds in its contents to the section devoted by Cuvier, in his great work, to his second class, the birds. And in the Stonisfield slate,—a deposit interposed between the "Inferior" and "Great Oolites," we detect the earliest indications of his first or mammaliferous class, apparently represented, however, by but one order,—the Marsupiata, or pouched animals, to whose special place in the scale I shall afterwards have occasion to refer. Not until we reach the times of the Tertiary division do the mammals in their higher orders appear. The great Tertiary volume corresponds to those volumes of Cuvier which treat of the placental animals that suckle their young. And finally,—last born of creation,—man appears upon the scene, in his several races and varieties; the sublime arch of animal being at length receives its keystone; and the finished work stands up complete, from foundation to pinnacle, at once an admirably adjusted occupant of space, and a wonderful monument of Divine arrangement and classification, as it exists in time. Save at two special points, to which I shall afterwards advert, the particular arrangement unfolded by geologic history is exactly that which the greatest and most philosophic of the naturalists had, just previous to its discovery, originated and adopted as most conformable to nature: the arrangements of geologic history as exhibited in time, if, commencing at the earliest ages, we pursue it downwards, is exactly that of the "Animal Kingdom" of Cuvier read backwards.
Let us then, in grappling with the vast multiplicity of our subject, attempt reducing and simplifying it by means of the classifying principle; not simply, however,—again to recur to the remark of the metaphysician,—as an internal principle given us by nature, but as an external principle exemplified by nature. Let us take the organisms of the old geologic periods in the order in which they occur in time; secure, as has been shown, that if our chronology be correct, our classification will, as a consequence, be good. It will be for the natural theologians of the coming age to show the bearing of this wonderful fact on the progress of man towards the just and the solid, and on the being and character of man's Creator,—to establish, on the one hand, against the undue depreciators of intellect and its results, that in certain departments of mind, such as that which deals with the arrangement and development of the scheme of organic being, human thought is not profitlessly revolving in an idle circle, but progressing Godwards, and gradually unlocking the order of creation. And, on the other hand, it will be equally his proper business to demand of the Pantheist how,—seeing that only persons (such as the Cuviers and Lindleys) could have wrought out for themselves the real arrangement of this scheme,—how, I say, or on what principle, it is to be held that it was a scheme originated and established at the beginning, not by a personal, but by an impersonal God. But our present business is with the fact of the parallel arrangements, Divine and human,—not with the inferences legitimately deducible from it.