Above this ancient line of coast we find, at various heights, beds of shells of vastly older date than those of the low-lying terrace, and many of which are no longer to be found living around our shores. I spent some time last autumn in exploring one of these beds, once a sea bottom, but now raised two hundred and thirty feet over the sea, in which there occurred great numbers of shells now not British, though found in many parts of Britain at heights varying from two hundred to nearly fourteen hundred feet over the existing sea level. But though no longer British shells, they are shells that still continue to live in high northern latitudes, as on the shores of Iceland and Spitzbergen; and the abundance in which they were developed on the submerged plains and hill-sides of what are now England and Scotland, during what is termed the Pleistocene period, shows of itself what a very protracted period that was. The prevailing tellina of the bed which I last explored,—a bed which occurs in some places six miles inland, in others elevated on the top of dizzy crags,—is a sub-arctic shell (Tellina proxima), of which only dead valves are now to be detected on our coasts, but which may be found living at the North Cape and in Greenland. The prevailing astarte, its contemporary, was Astarte arctica, now so rare as a British species, that many of our most sedulous collectors have never seen a native specimen, but which is comparatively common on the northern shores of Iceland, and on the eastern coasts of Norway, within the arctic circle. In this elevated Scottish bed of the Pleistocene period I laid these boreal shells open to the light by hundreds, on the spot evidently where the individuals had lived and died. Under the severe climatal conditions to which (probably from some change in the direction of the gulf stream) what is now Northern Europe had been brought, this tellina and astarte had increased and multiplied until they became prevailing shells of the British area; and this increase must have been the slow work of ages, during which the plains, and not a few of the table lands, of the country, were submerged in a sub-arctic sea, and Great Britain existed as but a scattered archipelago of wintry islands. But in a still earlier period, of which there exists unequivocal evidence in the buried forests of Happisburgh and Cromer, the country had not only its head above water, as now, but seems to have possessed oven more than its present breadth of surface. During this ancient time,—more remote by many centuries than not only the times of the old coast-line, but than even those of the partial submergence of the island,—that northern mammoth lived in great abundance, of which the remains have been found by hundreds in England alone, together with the northern hippopotamus, and at least two northern species of rhinoceros. And though they have all ceased to exist, with their wild associates in the forests and jungles of the Pleistocene, the cave-hyæna, the cave-tiger, and the cave-bear, we know that the descendants of some of their feebler contemporaries, such as the badger, the fox, the wild cat, and the red deer, still live amid our hills and brakes. The trees, too, under which they roamed, and whose remains we find buried in the same deposits as theirs, were of species that still hold their place as aboriginal trees of the country, or of at least the more northerly provinces of the continent. The common Scotch fir, the common birch, and a continental species of conifer of the far north, the Norwegian spruce (Abies excelsa), have been found underlying the Pleistocene drift, and rooted in the mammiferous crag; and for many ages must the old extinct elephant have roamed amid these familiar trees. From one limited tract of sea bottom on the Norfolk coast the fishermen engaged in dredging oysters brought ashore, in the course of thirteen years (from 1820 to 1833), no fewer than two thousand elephants' grinders, besides great tusks and numerous portions of skeletons. It was calculated that these remains could not have belonged to fewer than five hundred individual mammoths of English growth; and, various in their states of keeping, and belonging to animals of which only a few at a time could have found sufficient food in a limited tract of country, the inference seems inevitable that they must have belonged, not to one or two, but to many succeeding generations. The further fact, that remains of this ancient elephant (Elephas primigenius) occur all round the globe in a broad belt, extending from the fortieth to near the seventieth degree of north latitude, leads to the same conclusion. It must have required many ages ere an animal that breeds so slowly as the elephant could have extended itself over an area so vast.
NORWEGIAN SPRUCE.
(Abies excelsa.)
Many of the contemporaries of this northern mammoth, especially of its molluscan contemporaries, continue, as I have said, to live in their descendants. Of even a still more ancient period, represented by the Red Crag, seventy out of every hundred species of shells still exist; and of an older period still, represented by the Coraline Crag, there survive sixty out of every hundred. In the Red Crag, for instance, we find the first known ancestors of our common edible periwinkle and common edible mussel; and in the Coraline Crag, the first known ancestors of the common horse-mussel, the common whelk, the common oyster, and the great pecten. There then occurs a break in the geologic deposits of Britain, which, however, in other parts of Europe we find so filled up as to render it evident that no corresponding break took place in the chain of existence; but that, on the contrary, from the present time up to the times represented by the earliest Eocene formations of the Tertiary division, day has succeeded day, and season has followed season, and that no chasm or hiatus—no age of general chaos, darkness, and death—has occurred, to break the line of succession, or check the course of life. All the evidence runs counter to the supposition that immediately before the appearance of man upon earth, there existed a chaotic period which separated the previous from the present creation. Up till the commencement of the Eocene ages, if even then, there was no such chaotic period, in at least what is now Britain and the European continent: the persistency from a high antiquity of some of the existing races, of not only plants and shells, but of even some of the mammiferous animals, such as the badger, the goat, and the wild cat, prove there was not; and any scheme of reconciliation which takes such a period for granted must be deemed as unsuited to the present state of geologic knowledge, as any scheme would have been forty years ago which took it for granted that the writings of Moses do "fix the antiquity of the globe."
The scheme of reconciliation adopted by the late Dr. Pye Smith, though, save in one particular, identical, as I have said, with that of Dr. Chalmers, is made, in virtue of its single point of difference, to steer clear of the difficulty. Both schemes exhibit the creation recorded in Genesis as an event which took place about six thousand years ago; both describe it as begun and completed in six natural days; and both represent it as cut off from a previously existing creation by a chaotic period of death and darkness. But while, according to the scheme of Chalmers, both the Biblical creation and the previous period of death are represented as coextensive with the globe, they are represented, according to that of Dr. Smith, as limited and local. They may have extended, it is said, over only a few provinces of Central Asia, in which, when all was life and light in other parts of the globe, there reigned for a time only death and darkness amid the welterings of a chaotic sea; which, at the Divine command, was penetrated by light, and occupied by dry land, and ultimately, ere the end of the creative week, became a centre in which certain plants and animals, and finally man himself, were created. And this scheme, by leaving to the geologist in this country and elsewhere, save mayhap in some unknown Asiatic district, his unbroken series, certainly does not conflict with the facts educed by geologic discovery. It virtually removes Scripture altogether out of the field. I must confess, however, that on this, and on some other accounts, it has failed to satisfy me. I have stumbled, too, at the conception of a merely local and limited chaos, in which the darkness would be so complete, that when first penetrated by the light, that penetration could be described as actually a making or creating of light; and that, while life obtained all around its precincts, could yet be thoroughly void of life, A local darkness so profound as to admit no ray of light seems to have fallen for a time on Egypt, as one of the ten plagues; but the event was evidently miraculous; and no student of natural science is entitled to have recourse, in order to extricate himself out of a difficulty, to supposititious, unrecorded miracle. Creation cannot take place without miracle; but it would be a strange reversal of all our previous conclusions on the subject, should we have to hold that the dead, dark, blank out of which creation arose was miraculous also. And if, rejecting miracle, we cast ourselves on the purely natural, we find that the local darknesses dependent on known causes, of which we have any record in history, were always either very imperfect, like the darkness of your London fogs, or very temporary, like the darkness described by Pliny as occasioned by a cloud of volcanic ashes; and so, altogether inadequate to meet the demands of a hypothesis such as that of Dr. Smith. And yet further, I am disposed, I must add, to look for a broader and more general meaning in that grand description of the creation of all things with which the Divine record so appropriately opens, than I could recognize it as forming, were I assured it referred to but one of many existing creations,—a creation restricted to mayhap a few hundred square miles of country, and to mayhap a few scores of animals and plants. What, then, is the scheme of reconciliation which I would venture to propound?
Let me first remark, in reply, that I come before you this evening, not as a philologist, but simply as a student of geological fact, who, believing his Bible, believes also, that though theologians have at various times striven hard to pledge it to false science, geographical, astronomical, and geological, it has been pledged by its Divine Author to no falsehood whatever. I occupy exactly the position now, with respect to geology, that the mere Christian geographer would have occupied with respect to geography in the days of those doctors of Salamanca who deemed it unscriptural to hold with Columbus that the world is round,—not flat; or exactly the position which the mere Christian astronomer would have occupied with respect to astronomy in the days of that Francis Turrettine who deemed it unscriptural to hold with Newton and Galileo, that it is the earth which moves in the heavens, and the sun which stands still. The mere geographer or astronomer might have been wholly unable to discuss with Turrettine or the doctors the niceties of Chaldaic punctuation, or the various meanings of the Hebrew verbs. But this much, notwithstanding, he would be perfectly qualified to say:—However great your skill as linguists, your reading of what you term the scriptural geography or scriptural astronomy must of necessity be a false reading, seeing that it commits Scripture to what, in my character as a geographer or astronomer, I know to be a monstrously false geography or astronomy. Premising, then, that I make no pretensions to even the slightest skill in philology, I remark further, that it has been held by accomplished philologists, that the days of the Mosaic creation may be regarded, without doing violence to the genius of the Hebrew language, as successive periods of great extent. And certainly, in looking at my English Bible, I find that the portion of time spoken of in the first chapter of Genesis as six days, is spoken of in the second chapter as one day. True, there are other philologers, such as the late Professor Moses Stuart, who take a different view; but then I find this same Professor Stuart striving hard to make the phraseology of Moses "fix the antiquity of the globe;" and so, as a mere geologist, I reject his philology, on exactly the same principle on which the mere geographer would reject, and be justified in rejecting, the philology of the doctors of Salamanca, or on which the mere astronomer would reject, and be justified in rejecting, the philology of Turrettine and the old Franciscans. I would, in any such case, at once, and without hesitation, cut the philological knot, by determining that that philology cannot be sound which would commit the Scriptures to a science that cannot be true. Waiving, however, the question as a philological one, and simply holding with Cuvier, Parkinson, and Silliman, that each of the six days of the Mosaic narrative in the first chapter were what is assuredly meant by the day referred to in the second,—not natural days, but lengthened periods,—I find myself called on, as a geologist, to account for but three of the six. Of the period during which light was created,—of the period during which a firmament was made to separate the waters from the waters,—or of the period during which the two great lights of the earth, with the other heavenly bodies, became visible from the earth's surface,—we need expect to find no record in the rocks. Let me, however, pause for a moment, to remark the peculiar character of the language in which we are first introduced in the Mosaic narrative to the heavenly bodies,—sun, moon, and stars. The moon, though absolutely one of the smallest lights of our system, is described as secondary and subordinate to only its greatest light, the sun. It is the apparent, then, not the actual, which we find in the passage,—what seemed to be, not what was; and as it was merely what appeared to be greatest that was described as greatest, on what grounds are we to hold that it may not also have been what appeared at the time to be made that has been described as made? The sun, moon, and stars may have been created long before, though it was not until this fourth period of creation that they became visible from the earth's surface.
The geologist, in his attempts to collate the Divine with the geologic record, has, I repeat, only three of the six periods of creation to account for,—the period of plants, the period of great sea monsters and creeping things, and the period of cattle and beasts of the earth. He is called on to question his systems and formations regarding the remains of these three great periods, and of these only. And the question once fairly stated, what, I ask, is the reply? All geologists agree in holding that the vast geological scale naturally divides into three great parts. There are many lesser divisions,—divisions into systems, formations, deposits, beds, strata; but the master divisions, in each of which we find a type of life so unlike that of the others, that even the unpractised eye can detect the difference, are simply three,—the Palæozoic, or oldest fossiliferous division; the Secondary, or middle fossiliferous division; and the Tertiary, or latest fossiliferous division.
In the first, or Palæozoic division, we find corals, crustaceans, molluscs, fishes, and, in its later formations, a few reptiles. But none of these classes of organisms give its leading character to the Palæozoic; they do not constitute its prominent feature, or render it more remarkable as a scene of life than any of the divisions which followed. That which chiefly distinguished the Palæozoic from the Secondary and Tertiary periods was its gorgeous flora. It was emphatically the period of plants,—"of herbs yielding seed after their kind." In no other age did the world ever witness such a flora: the youth of the earth was peculiarly a green and umbrageous youth,—a youth of dusk and tangled forests, of huge pines and stately araucarians, of the reed-like calamite, the tall tree-fern, the sculptured sigillaria, and the hirsute lepidodendron. Wherever dry land, or shallow lake, or running stream appeared, from where Melville Island now spreads out its ice wastes under the star of the pole, to where the arid plains of Australia lie solitary beneath the bright cross of the south, a rank and luxuriant herbage cumbered every footbreadth of the dank and steaming soil; and even to distant planets our earth must have shone through the enveloping cloud with a green and delicate ray. Of this extraordinary age of plants we have our cheerful remembrancers and witnesses in the flames that roar in our chimneys when we pile up the winter fire,—in the brilliant gas that now casts its light on this great assemblage, and that lightens up the streets and lanes of this vast city,—in the glowing furnaces that smelt our metals, and give moving power to our ponderous engines,—in the long dusky trains that, with shriek and snort, speed dart-like athwart our landscapes,—and in the great cloud-enveloped vessels that darken the lower reaches of your noble river, and rush in foam over ocean and sea. The geologic evidence is so complete as to be patent to all, that the first great period of organized being was, as described in the Mosaic record, peculiarly a period of herbs and trees, "yielding seed after their kind."
The middle great period of the geologist—that of the Secondary division—possessed, like the earlier one, its herbs and plants, but they were of a greatly less luxuriant and conspicuous character than their predecessors, and no longer formed the prominent trait or feature of the creation to which they belonged. The period had also its corals, its crustaceans, its molluscs, its fishes, and in some one or two exceptional instances its dwarf mammals. But the grand existences of the age,—the existences in which it excelled every other creation, earlier or later, were its huge creeping things,—its enormous monsters of the deep,—and, as shown by the impressions of their footprints stamped upon the rocks, its gigantic birds. It was peculiarly the age of egg-bearing animals, winged and wingless. Its wonderful whales, not, however, as now, of the mammalian, but of the reptilian class,—ichthyosaurs, plesiosaurs, and cetiosaurs,—must have tempested the deep; its creeping lizards and crocodiles, such as the teliosaurus, megalosaurus, and iguanodon,—creatures some of which more than rivalled the existing elephant in height, and greatly more than rivalled him in bulk,—must have crowded the plains or haunted by myriads the rivers of the period; and we know that the footprints of at least one of its many birds are fully twice the size of those made by the horse or camel. We are thus prepared to demonstrate, that the second period of the geologist was peculiarly and characteristically a period of whale-like reptiles of the sea, of enormous creeping reptiles of the land, and of numerous birds, some of them of gigantic size; and, in meet accordance with the fact, we find that the second Mosaic period with which the geologist is called on to deal was a period in which God created the fowl that flieth above the earth, with moving [or creeping] creatures, both in the waters and on the land, and what our translation renders great whales, but that I find rendered, in the margin, great sea monsters.