Now, the intuitions which pure mathematics lays at the foundation of all its cognitions and judgments which appear at once apodeictic and necessary are Space and Time. For mathematics must first have all its concepts in intuition, and pure mathematics in pure intuition, that is, it must construct them. If it proceeded in any other way, it would be impossible to make any headway, for mathematics proceeds, not analytically by dissection of concepts, but synthetically, and if pure intuition be wanting, there is nothing in which the matter for synthetical judgments a priori can be given. Geometry is based upon the pure intuition of space. Arithmetic accomplishes its concept of number by the successive addition of units in time; and pure mechanics especially cannot attain its concepts of motion without employing the representation of time. Both representations, however, are only intuitions; for if we omit from the empirical intuitions of bodies and their alterations (motion) everything empirical, or belonging to sensation, space and time still remain, which are therefore pure intuitions that lie a priori at the basis of the empirical. Hence they can never be omitted, but at the same time, by their being pure intuitions a priori, they prove that they are mere forms of our sensibility, which must precede all empirical intuition, or perception of actual objects, and conformably to which objects can be known a priori, but only as they appear to us.

§ 11. The problem of the present section is therefore solved. Pure mathematics, as synthetical cognition a priori, is only possible by referring to no other objects than those of the senses. At the basis of their empirical intuition lies a pure intuition (of space and of time) which is a priori. This is possible, because the latter intuition is nothing but the mere form of sensibility, which precedes the actual appearance of the objects, in that it, in fact, makes them possible. Yet this faculty of intuiting a priori affects not the matter of the phenomenon (that is, the sense-element in it, for this constitutes that which is empirical), but its form, viz., space and time. Should any man venture to doubt that these are determinations adhering not to things in themselves, but to their relation to our sensibility, I should be glad to know how it can be possible to know the constitution of things a priori, viz., before we have any acquaintance with them and before they are presented to us. Such, however, is the case with space and time. But this is quite comprehensible as soon as both count for nothing more than formal conditions of our sensibility, while the objects count merely as phenomena; for then the form of the phenomenon, i.e., pure intuition, can by all means be represented as proceeding from ourselves, that is, a priori.

§ 12. In order to add something by way of illustration and confirmation, we need only watch the ordinary and necessary procedure of geometers. All proofs of the complete congruence of two given figures (where the one can in every respect be substituted for the other) come ultimately to this that they may be made to coincide; which is evidently nothing else than a synthetical proposition resting upon immediate intuition, and this intuition must be pure, or given a priori, otherwise the proposition could not rank as apodeictically certain, but would have empirical certainty only. In that case, it could only be said that it is always found to be so, and holds good only as far as our perception reaches. That everywhere space (which [in its entirety] is itself no longer the boundary of another space) has three dimensions, and that space cannot in any way have more, is based on the proposition that not more than three lines can intersect at right angles in one point; but this proposition cannot by any means be shown from concepts, but rests immediately on intuition, and indeed on pure and a priori intuition, because it is apodeictically certain. That we can require a line to be drawn to infinity (in indefinitum), or that a series of changes (for example, spaces traversed by motion) shall be infinitely continued, presupposes a representation of space and time, which can only attach to intuition, namely, so far as it in itself is bounded by nothing, for from concepts it could never be inferred. Consequently, the basis of mathematics actually are pure intuitions, which make its synthetical and apodeictically valid propositions possible. Hence our transcendental deduction of the notions of space and of time explains at the same time the possibility of pure mathematics. Without some such deduction its truth may be granted, but its existence could by no means be understood, and we must assume "that everything which can be given to our senses (to the external senses in space, to the internal one in time) is intuited by us as it appears to us, not as it is in itself."

§ 13. Those who cannot yet rid themselves of the notion that space and time are actual qualities inhering in things in themselves, may exercise their acumen on the following paradox. When they have in vain attempted its solution, and are free from prejudices at least for a few moments, they will suspect that the degradation of space and of time to mere forms of our sensuous intuition may perhaps be well founded.

If two things are quite equal in all respects as much as can be ascertained by all means possible, quantitatively and qualitatively, it must follow, that the one can in all cases and under all circumstances replace the other, and this substitution would not occasion the least perceptible difference. This in fact is true of plane figures in geometry; but some spherical figures exhibit, notwithstanding a complete internal agreement, such a contrast in their external relation, that the one figure cannot possibly be put in the place of the other. For instance, two spherical triangles on opposite hemispheres, which have an arc of the equator as their common base, may be quite equal, both as regards sides and angles, so that nothing is to be found in either, if it be described for itself alone and completed, that would not equally be applicable to both; and yet the one cannot be put in the place of the other (being situated upon the opposite hemisphere). Here then is an internal difference between the two triangles, which difference our understanding cannot describe as internal, and which only manifests itself by external relations in space.

But I shall adduce examples, taken from common life, that are more obvious still.

What can be more similar in every respect and in every part more alike to my hand and to my ear, than their images in a mirror? And yet I cannot put such a hand as is seen in the glass in the place of its archetype; for if this is a right hand, that in the glass is a left one, and the image or reflexion of the right ear is a left one which never can serve as a substitute for the other. There are in this case no internal differences which our understanding could determine by thinking alone. Yet the differences are internal as the senses teach, for, notwithstanding their complete equality and similarity, the left hand cannot be enclosed in the same bounds as the right one (they are not congruent); the glove of one hand cannot be used for the other. What is the solution? These objects are not representations of things as they are in themselves, and as the pure understanding would cognise them, but sensuous intuitions, that is, appearances, the possibility of which rests upon the relation of certain things unknown in themselves to something else, viz., to our sensibility. Space is the form of the external intuition of this sensibility, and the internal determination of every space is only possible by the determination of its external relation to the whole space, of which it is a part (in other words, by its relation to the external sense). That is to say, the part is only possible through the whole, which is never the case with things in themselves, as objects of the mere understanding, but with appearances only. Hence the difference between similar and equal things, which are yet not congruent (for instance, two symmetric helices), cannot be made intelligible by any concept, but only by the relation to the right and the left hands which immediately refers to intuition.

Remark I.

Pure Mathematics, and especially pure geometry, can only have objective reality on condition that they refer to objects of sense. But in regard to the latter the principle holds good, that our sense representation is not a representation of things in themselves, but of the way in which they appear to us. Hence it follows, that the propositions of geometry are not the results of a mere creation of our poetic imagination, and that therefore they cannot be referred with assurance to actual objects; but rather that they are necessarily valid of space, and consequently of all that may be found in space, because space is nothing else than the form of all external appearances, and it is this form alone in which objects of sense can be given. Sensibility, the form of which is the basis of geometry, is that upon which the possibility of external appearance depends. Therefore these appearances can never contain anything but what geometry prescribes to them.

It would be quite otherwise if the senses were so constituted as to represent objects as they are in themselves. For then it would not by any means follow from the conception of space, which with all its properties serves to the geometer as an a priori foundation, together with what is thence inferred, must be so in nature. The space of the geometer would be considered a mere fiction, and it would not be credited with objective validity, because we cannot see how things must of necessity agree with an image of them, which we make spontaneously and previous to our acquaintance with them. But if this image, or rather this formal intuition, is the essential property of our sensibility, by means of which alone objects are given to us, and if this sensibility represents not things in themselves, but their appearances: we shall easily comprehend, and at the same time indisputably prove, that all external objects of our world of sense must necessarily coincide in the most rigorous way with the propositions of geometry; because sensibility by means of its form of external intuition, viz., by space, the same with which the geometer is occupied, makes those objects at all possible as mere appearances.